Regularization Paths with Guarantees for Convex Semidefinite Optimization

Joachim Giesen FSU Jena, DE Martin Jaggi ETH Zurich, CH Sören Laue FSU Jena, DE

Pathwise Optimization

Parameterized Convex Optimization: Minimize a convex function $f_t(x)$ over a compact convex domain $x \in D$.

 $\min_{x \in D} f_t(x)$

Path-Following Idea: A Piecewise Constant Path

Guarantee small duality gap $g_t(x) \leq \varepsilon$ along the entire path in t **Go**al:

 $\geq \overline{2}$

Keep x constant, change t as far as possible Idea:

At the current value t, compute an approximate solution x, of a quality slightly better than necessary $g_t(x) \leq \frac{\varepsilon}{2}$

The objective is parameterized by an additional parameter t (e.g. a regularization parameter)

Solution Path:

Maintain an optimal solution $x^*(t)$ along the entire path, as the parameter t changes.

Approximate Solution Path:

Maintain an \mathcal{E} -approximate solution, along

the path in t.

Measure of approximation $g_t(x) \leq \varepsilon$ quality: Duality gap (quality certificate, easy to compute!)

How far can we change the parameter $t \to t'$ such that **x** is still good enough at t'? $g_{t'}(x) \leq \varepsilon$

Update t := t', and repeat

Stability of Approximate Solutions: Any t' satisfying $g_{t'}(x) - g_t(x) \le \varepsilon - \frac{\varepsilon}{2}$ will maintain the \mathcal{E} -guarantee for x. When the duality gap changes continuously in t, we have intervals of size at least $\ \Omega(arepsilon)$

Path Complexity

Applications to Semidefinite Optimization

Number of intervals of piecewise constant solutions

Theorem 6. Let f_t be convex and continuously differentiable in X, and let $\nabla f_t(X)$ be Lipschitz continuous in t with Lipschitz constant L, for all feasible X. Then the ε -approximation path complexity of Problem (1) over the parameter range $[t_{\min}, t_{\max}] \subset \mathbb{R}$ is at most

$\left\lceil 2\right\rceil$	$2L\cdot\gamma$.	$t_{\rm max} - t_{\rm min}$	$\left] - O\left(\frac{1}{-}\right) \right]$	
	$\gamma - 1$	arepsilon	$ = O(\varepsilon)$.	

Matrix completion for recommender systems

Experimental Results

Figure 1: The nuclear norm regularization path for the three MovieLens datasets.

Figure 2: The regularization path for the weighted nuclear norm $\|.\|_{nuc(p,q)}$.

Weighted Nuclear Norm

 $||Z||_{nuc(p,q)} := ||PZQ||_{*}$

Can be reduced to the classical nuclear norm!

weight	e d nuclear-norm		classic nuclear-norm
$\min_{\substack{Z\in\mathbb{R}^{m\times n}\\s.t.}}$	$ \begin{aligned} f(Z) \\ \ Z\ _{nuc(p,q)} &\leq t \end{aligned} \blacklozenge $		$\min_{\bar{Z}\in\mathbb{R}^{m\times n}} f(P^{-1}\bar{Z}Q^{-1})$ s.t. $\ \bar{Z}\ _* \leq t$
Guarante	es and Algorithms	trans	late to the weighted case

diagonal

for P,Q

 $\min_{Z \in \mathbb{R}^{m \times n}} \left\| Z \right\|_* + \lambda' \left\| M - Z \right\|_1$

Robust PCA

Our regularization path framework applies to the (nuclear norm) constrained variant, if the ℓ_1 -loss is smoothened

A Variant of Sparse PCA

We obtain the regularization path for the SDP-relaxation

 $\min_{X \in \mathbb{S}^{n \times n}} \quad \rho \cdot \mathbf{e}^T |X| \mathbf{e} - \operatorname{Tr}(MX)$ s.t. $\operatorname{Tr}(X) = 1$, $X \succ 0$

Conclusions

Approximate Path	Exact Path
arepsilon-guarantee on gap, continuously along path	exact solution along path
widely applicable and practical	problem-specific, practical only for some problems
low complexity Ο(Ι/ε)	complexity can be expo- nential (in the worst case)
any approx. internal optimizer can be used	exact internal optimizers are necessary