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Regularization Paths with Guarantees 
for Convex Semidefinite Optimization

Solution Path:
Maintain an optimal solution              along 
the entire path, as the parameter t changes.

Approximate Solution Path:
Maintain an  "-approximate solution, along 
the path in t.
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�Applications to Semidefinite Optimization 

Pathwise Optimization

Parameterized Convex Optimization:
Minimize a convex function
over a compact convex domain              .
 

The objective is parameterized by an additional 
parameter t  (e.g. a regularization parameter)
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Path-Following Idea: A Piecewise Constant Path

x

⇤(t)

At the current value t, compute an 
approximate solution x, of a quality 
slightly better than necessary

gt(x)  "

Measure of approximation
quality:
Duality gap  (quality certificate, 
                   easy to compute!)

gt0(x)  "

How far can we change the 
parameter                such that 
x is still good enough at t’ ?

t ! t0

gt(x)  "
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Stability of Approximate Solutions: 
Any t’ satisfying
will maintain the  "-guarantee for x. 
When the duality gap changes continuously 
in t, we have intervals of size at least

Update                , 
and repeat

t := t0

⌦(")

Path Complexity
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Goal: 	
	
 Guarantee small duality gap                          along the entire path in t

Idea:	
 	
 Keep x constant, change t as far as possible

gt(x)  "

gt0(x)� gt(x)  "� "
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Matrix completion for recommender systems
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Given a small 
sample of entries 
of a matrix, we 
want to predict 
all its entries.

Use a nuclear norm 
regularization!
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Nuclear-Norm Regularized Optimization
also called „trace norm“,
sum of singular valuesarbitrary 

convex function 
on matrices Here: constrained variant

min
Z

f(Z)

s.t. kZk⇤  t

min
Z2Rm⇥n

f(Z) + �kZk⇤

Weighted Nuclear Norm

weighted nuclear-norm classic nuclear-norm

Can be reduced to the classical nuclear norm!
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a solution of rank O
�
1

"

�
. Other algorithms often em-

ploy low-rank heuristics for practical reasons. Since
low-rank constraints do form a non-convex domain,
these methods lose the merits and possible guarantees
for convex optimization methods. With Hazan’s algo-
rithm we can approximate the original convex Prob-
lem (3) with guaranteed approximation quality, with-
out any restrictions on the rank.

There are many other popular methods to solve nu-
clear norm regularized problems. Alternating gradient
descent or stochastic gradient descent (SGD) meth-
ods have been used extensively in particular for ma-
trix completion problems, see for example [Rennie and
Srebro, 2005, Webb, 2006, Lin, 2007, Koren et al.,
2009, Takács et al., 2009, Recht and Ré, 2011]. How-
ever, these methods optimize a non-convex formula-
tion of (2) and can get stuck in local minima, and
therefore—in contrast to Hazan’s method with our
convex transformation (4)—come in general with no
convergence guarantee. On the other hand, there are
also several known methods of “proximal gradient”
and “singular value thresholding”-type from the op-
timization community, see for example [Toh and Yun,
2010], which however require a full singular value de-
composition in each iteration, in contrast to the sim-
pler steps of Hazan’s algorithm [Jaggi and Sulovský,
2010]. Nevertheless, any of these other methods and
heuristics can still be used as the internal optimizer
in our path-tracking algorithm, as we can always com-
pute the duality gap as a certificate for the quality of
the found approximate solution.

4 Applications

Using our solution path approximation algorithm, we
directly obtain piecewise constant solution paths of
guaranteed approximation quality for any problem of
the form (1), including all nuclear norm regularized
Problems (2) and (3), such as standard matrix com-
pletion problems, and robust PCA.

4.1 Matrix Completion

Algorithm 1 applies to matrix completion problems
with any convex di↵erentiable loss function, such as
the smoothed hinge loss or the standard squared loss,
and includes the classical maximum-margin matrix
factorization variants [Srebro et al., 2004].

The regularized matrix completion task is exactly
Problem (3) with the function f given by the loss over
the observed entries of the matrix, ⌦ ✓ [n] ⇥ [m], i.e.
f(Z) =

P
(i,j)2⌦

L(Zij , Yij), where L(., .) is an arbi-
trary loss-function that is convex in its Z-argument.
The most widely used variant employs the squared

loss, given by

f(Z) =
1

2

X

(i,j)2⌦

(Zij � Yij)
2. (6)

Using the notation (A)
⌦

for the matrix that coincides
with A on the indices ⌦ and is zero otherwise, rf(Z)
can be written as

rf(Z) = (Z � Y )
⌦

.

To apply Algorithm 1 we move from the problem in
formulation (3) to the formulation (4). Still, the sym-
metric gradient matrix rft(X) 2 S(m+n)⇥(m+n) used
by the algorithm is of the simple form of rf(Z) as
above (recall the notation X =

�
V Z
ZT W

�
). As this ma-

trix is sparse—it has only |⌦| non-zero entries—storage
and approximate eigenvector computations can be per-
formed much more e�ciently than for dense problems.
An equivalent matrix factorization of any approxima-
tionX for Problem (1) can always be obtained directly
from the Cholesky decomposition of X, because X is
positive semidefinite.

4.2 Weighted Nuclear Norm

A promising weighted nuclear norm regularization ap-
proach for matrix completion has been recently pro-
posed in [Salakhutdinov and Srebro, 2010]. For fixed
weight vectors p 2 Rm, q 2 Rn, the weighted nuclear
norm kZknuc(p,q) of Z 2 Rm⇥n is defined as

kZknuc(p,q) := kPZQk⇤ ,

where P = diag(
p
p) 2 Rm⇥m denotes the diagonal

matrix whose i-th diagonal entry is
p
pi, and analo-

gously for Q = diag(
p
q). Here p 2 Rm is the vector

whose entries are the probabilities p(i) > 0 that the
i-th row is observed in the sampling ⌦. Analogously,
q 2 Rn contains the probability q(j) > 0 for each
column j. The opposite weighting has also been sug-
gested in [Weimer et al., 2008].

Any optimization problem with a weighted nuclear
norm regularization

min
Z2Rm⇥n

f(Z)

s.t. kZknuc(p,q)  t
2

,
(7)

and arbitrary loss function f can therefore be phrased
equivalently over the domain kPZQk⇤  t/2, such
that it reads as (if we substitute Z̄ := PZQ),

min
¯Z2Rm⇥n

f(P�1Z̄Q�1)

s.t.
��Z̄

��
⇤  t

2

,

Hence, analogously to the original nuclear norm regu-
larization approach, we have reduced the task to our

for P,Q 
diagonal
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Guarantees and Algorithms translate to the weighted case

Robust PCA
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standard convex Problem (1) for ft that here is defined
as

ft(X) = f̂

✓
t

✓
V ¯Z
¯ZT W

◆◆
:= f(tP�1Z̄Q�1).

This implies that any algorithm solving Problem (1)
also serves as an algorithm for weighted nuclear norm
regularized problems. In particular, Hazan’s algo-
rithm [Hazan, 2008, Jaggi and Sulovský, 2010] im-
plies a guaranteed approximation quality of " after
O
�
1

"

�
many rank-1 updates. So far, to the best of our

knowledge, no approximation guarantees were known
for such optimization problems involving the weighted
nuclear norm.

4.3 Solution Paths for Robust PCA

Principal component analysis (PCA) is still widely
used for the analysis of high-dimensional data and di-
mensionality reduction although it is quite sensitive
to errors and noise in just a single data point. As
a remedy to this problem [Candes et al., 2011] have
proposed a robust version of PCA, also called princi-
pal component pursuit, which is given as the following
optimization problem,

min
Z2Rm⇥n

kZk⇤ + �0 kM � Zk
1

. (8)

Here k.k
1

is the entry-wise `
1

-norm, and M is the
given data matrix. This problem is already in the
form of Problem (2), for � = 1

�0 . Therefore, we can
approximate its entire solution path in the regular-
ization parameter � using Algorithm 1, obtain piece-
wise constant solutions together with a continuous "-
approximation guarantee along the entire regulariza-
tion path.

4.4 Solution Paths for Sparse PCA

The idea of sparse PCA is to approximate a given data
matrix A 2 Sn⇥n by approximate eigenvectors that are
sparse, see Zhang et al. [2010] for an overview. Many
algorithms have been proposed for sparse PCA, see for
example [Sigg and Buhmann, 2008] and [d’Aspremont
et al., 2007a], the latter algorithm is also considering
a discrete solution path, as the sparsity changes.

The SDP-relaxation of [d’Aspremont et al., 2007b,
Equation 3.2] for sparse PCA of a matrix A is given
by

min
X2Sn⇥n

⇢ · eT |X|e� Tr(AX)

s.t. Tr(X) = 1 ,
X ⌫ 0 .

(9)

Here |X| is element-wise for the matrix X, and e 2 Rn

is the all-ones vector. Using Algorithm 1, we can di-
rectly compute a complete approximate solution path

in the penalty parameter ⇢ of this relaxation, which
already is of the form (1).

5 Experimental Results

The goal of our experiments is to demonstrate that the
entire regularization path for nuclear norm regularized
problems is indeed e�ciently computable with our ap-
proach for large datasets, and that our described ap-
proximation guarantees are practical. Hence, we have
applied a variant of Algorithm 1 for a special case of
Problem (1) to nuclear norm regularized matrix com-
pletion tasks on the standard MovieLens data sets2 us-
ing the squared loss function, see Equation (6).

Table 2: Summary of the MovieLens data sets.

#ratings m =#users n =#movies

MovieLens 100k 10

5
943 1682

MovieLens 1M 10

6
6040 3706

MovieLens 10M 10

7
69878 10677

As the internal optimizer within the path solver, we
have used Hazan’s algorithm, as detailed in [Jaggi
and Sulovský, 2010], using the power method for com-
puting approximate eigenvectors. To get an accurate
bound on �

max

when computing the duality gap gt(X)
for each candidate solution X, we performed 300 iter-
ations of the power method. In all our experiments we
have used a quality improvement factor of � = 2.

Each dataset was uniformly split into 50% test ratings,
and 50% training ratings. All the provided ratings
were used “as-is”, without normalization to any kind of
prior3. The accuracy " was chosen as the relative error,
with respect to the initial function value ft(X = 0) at
t = 0, i.e., " = "0f

0

(0). As f is the squared loss, f
0

(0)
equals the Frobenius norm of the observed training
ratings, see Equation (6).

All the results that we present below have been ob-
tained from our (single-thread) implementation in Java

6 on a 2.4 GHz Intel Core i5 laptop with 4 GB RAM
running MacOS X.

Results. We have computed the entire regulariza-
tion paths for the nuclear norm k.k⇤ regularized Prob-
lem (3), as well as for regularization by using the

2
See http://www.grouplens.org and Table 2 for a

summary.

3
Users or movies which do appear in the test set but

not in the training set were kept as is, as our model can

cope with this. These ratings are accounted in the test

RMSE, which is slightly worse therefore (our prediction X
will always remain at the worst value, zero, at any such

rating).

A Variant of Sparse PCA

Our regularization path framework applies 
to the (nuclear norm) constrained variant, 

if the
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Contributions. We provide an algorithm for track-
ing approximate solutions of parameterized semidefi-
nite optimization problems in the form of Problem 1
along the entire parameter path. The algorithm is
very simple but comes with strong guarantees on the
approximation quality as well as on the running time.
The main idea is to compute at a parameter value
an approximate solution that is slightly better than
the required quality, and then to keep this solution
as the parameter changes exactly as long as the re-
quired approximation quality can still be guaranteed.
Only when the approximation quality is no longer suf-
ficient, a new solution again with slightly better than
required approximation guarantee is computed. We
prove that, if an approximation guarantee of " > 0 is
required along the entire path, then the number of nec-
essary solution updates is only O

�
1

"

�
, ignoring problem

specific constants. We also argue that this number of
updates is essentially best possible in the worst case,
and our experiments demonstrate that often, the com-
putation of an entire "-approximate solution path is
only marginally more expensive than the computation
of a single approximate solution.

Our path tracking algorithm is not tied to a specific
optimizer to solve the optimization problem at fixed
parameter values. Any existing optimizer or heuris-
tic of choice can be used to compute an approximate
solution at fixed parameter values.

As a side-result we also show that weighted nuclear
norm regularized problems can be optimized with a
solid convergence guarantee, by building upon the
rank-1 update method by [Hazan, 2008, Jaggi and
Sulovský, 2010].

Related Work. For kernel methods and many other
machine learning techniques, the resulting optimiza-
tion problems often turn out to be parameterized con-
vex quadratic programs, and in recent years a pleni-
tude of algorithms and heuristics have been developed
to “track” these solution paths, see for example [Hastie
et al., 2004, Loosli et al., 2007, Rosset and Zhu, 2007].
However, the exact piecewise linear solution path of
parameterized quadratic programs (in particular for
the SVM) is known to be of exponential complexity in
the worst case [Gärtner et al., 2010]. In the work here
by contrast we show that just constantly many inter-
vals of the parameter are su�cient for any fixed desired
continuous approximation quality " > 0. For a class of
vector optimization problems, such as SVMs, [Giesen
et al., 2010] have introduced this new approach of ap-
proximation paths of piecewise constant solutions.

To our best knowledge, no path algorithms are
known so far for the more general case of semidef-
inite optimization. The solution path for sparse

principal component analysis (PCA) was investigated
by [d’Aspremont et al., 2007a], which however is pa-
rameterized over discrete integral values from 1 to n,
where n is the number of variables. For a variant of
low-rank matrix completion, [Mazumder et al., 2010]
suggest to perform a grid search on the regularization
parameter interval, computing a single approximate
solution at each parameter t. However, they provide
no approximation guarantee between the chosen grid
points.

Notation. For matrices A,B 2 Rn⇥m, the standard
inner product is defined via the trace as

A •B := Tr(ATB),

and the (squared) Frobenius matrix norm is given by

kAk2F := A •A.

By Sn⇥n we denote the set of symmetric n ⇥ n ma-
trices. We write �

max

(A) for the largest eigenvalue of
a matrix A 2 Sn⇥n. A is called positive semidefinite
(PSD), written as A ⌫ 0, i↵ vTAv � 0 8v 2 Rn. The
(squared) spectral norm of A 2 Rn⇥n is defined as

kAk2
2

:= �
max

(ATA),

and the nuclear norm kAk⇤ of A 2 Rn⇥m, also known
as the trace norm, is the sum of the singular values
of A, or the `

1

-norm of the spectrum. Its well known
relation to matrix factorization is that

kAk⇤ = min
UV T

=A

1

2
(kUk2F + kV k2F ),

where the number of columns of U and V is not con-
strained [Fazel et al., 2001, Srebro et al., 2004].

2 The Duality Gap

The following notion of the duality gap is central to
our discussion and path tracking algorithm. The gap
can serve as a practical approximation quality mea-
sure for convex optimization problems in the form of
Problem (1). In the following we assume that our con-
vex objective function ft(X) is continuously di↵eren-
tiable1. We consider the gradient rft(X) with respect
to X, which is a symmetric matrix in Sn⇥n.

Definition 1. For Problem (1), the duality gap at any
matrix X 2 Sn⇥n is defined as

gt(X) = �
max

(�rft(X)) +X •rft(X)

1
If ft(X) is convex but not di↵erentiable, the concepts

of standard Lagrange duality can still be generalized for

subgradients analogously, so that any element of the sub-

gradient will give an upper bound on the approximation

error.

-loss is smoothened
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plies a guaranteed approximation quality of " after
O
�
1

"

�
many rank-1 updates. So far, to the best of our

knowledge, no approximation guarantees were known
for such optimization problems involving the weighted
nuclear norm.

4.3 Solution Paths for Robust PCA

Principal component analysis (PCA) is still widely
used for the analysis of high-dimensional data and di-
mensionality reduction although it is quite sensitive
to errors and noise in just a single data point. As
a remedy to this problem [Candes et al., 2011] have
proposed a robust version of PCA, also called princi-
pal component pursuit, which is given as the following
optimization problem,

min
Z2Rm⇥n

kZk⇤ + �0 kM � Zk
1

. (8)

Here k.k
1

is the entry-wise `
1

-norm, and M is the
given data matrix. This problem is already in the
form of Problem (2), for � = 1

�0 . Therefore, we can
approximate its entire solution path in the regular-
ization parameter � using Algorithm 1, obtain piece-
wise constant solutions together with a continuous "-
approximation guarantee along the entire regulariza-
tion path.

4.4 Solution Paths for Sparse PCA

The idea of sparse PCA is to approximate a given data
matrix A 2 Sn⇥n by approximate eigenvectors that are
sparse, see Zhang et al. [2010] for an overview. Many
algorithms have been proposed for sparse PCA, see for
example [Sigg and Buhmann, 2008] and [d’Aspremont
et al., 2007a], the latter algorithm is also considering
a discrete solution path, as the sparsity changes.

The SDP-relaxation of [d’Aspremont et al., 2007b,
Equation 3.2] for sparse PCA of a matrix A is given
by

min
X2Sn⇥n

⇢ · eT |X|e� Tr(MX)

s.t. Tr(X) = 1 ,
X ⌫ 0

(9)

Here |X| is element-wise for the matrix X, and e 2 Rn

is the all-ones vector. Using Algorithm 1, we can di-
rectly compute a complete approximate solution path

in the penalty parameter ⇢ of this relaxation, which
already is of the form (1).

5 Experimental Results

The goal of our experiments is to demonstrate that the
entire regularization path for nuclear norm regularized
problems is indeed e�ciently computable with our ap-
proach for large datasets, and that our described ap-
proximation guarantees are practical. Hence, we have
applied a variant of Algorithm 1 for a special case of
Problem (1) to nuclear norm regularized matrix com-
pletion tasks on the standard MovieLens data sets2 us-
ing the squared loss function, see Equation (6).

Table 2: Summary of the MovieLens data sets.

#ratings m =#users n =#movies

MovieLens 100k 10

5
943 1682

MovieLens 1M 10

6
6040 3706

MovieLens 10M 10

7
69878 10677

As the internal optimizer within the path solver, we
have used Hazan’s algorithm, as detailed in [Jaggi
and Sulovský, 2010], using the power method for com-
puting approximate eigenvectors. To get an accurate
bound on �

max

when computing the duality gap gt(X)
for each candidate solution X, we performed 300 iter-
ations of the power method. In all our experiments we
have used a quality improvement factor of � = 2.

Each dataset was uniformly split into 50% test ratings,
and 50% training ratings. All the provided ratings
were used “as-is”, without normalization to any kind of
prior3. The accuracy " was chosen as the relative error,
with respect to the initial function value ft(X = 0) at
t = 0, i.e., " = "0f

0

(0). As f is the squared loss, f
0

(0)
equals the Frobenius norm of the observed training
ratings, see Equation (6).

All the results that we present below have been ob-
tained from our (single-thread) implementation in Java

6 on a 2.4 GHz Intel Core i5 laptop with 4 GB RAM
running MacOS X.

Results. We have computed the entire regulariza-
tion paths for the nuclear norm k.k⇤ regularized Prob-
lem (3), as well as for regularization by using the

2
See http://www.grouplens.org and Table 2 for a

summary.

3
Users or movies which do appear in the test set but

not in the training set were kept as is, as our model can

cope with this. These ratings are accounted in the test

RMSE, which is slightly worse therefore (our prediction X
will always remain at the worst value, zero, at any such

rating).

We obtain the regularization path for the 
SDP-relaxation
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Figure 1: The nuclear norm regularization path for the three MovieLens datasets.
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Figure 2: The regularization path for the weighted nuclear norm k.knuc(p,q).

Table 1: Dependency of the path complexity (#int) on the accuracy ".

Regularization Accuracy MovieLens 100k, � = 2
"/f

0

(0) t
min

t
max

#int �avg
t f train

t
max

f test

opt

Nuclear norm 0.05 1000 60000 23 9438 0.0070 0.9912
k.k⇤ 0.01 1000 60000 97 582 0.0054 0.9905

0.002 1000 60000 387 175 0.0009 0.9981
Weighted 0.05 2 50 18 3.21 0.0619 0.9607
nuclear norm 0.01 2 50 73 1.18 0.0147 0.9559
k.knuc(p,q) 0.002 2 50 325 0.140 0.0098 0.9581

weighted nuclear norm k.knuc(p,q) as in the formula-
tion as Problem (7).

Figures 1 and 2 show the rooted mean squared er-
ror (RMSE) values along a guaranteed ("0 = 0.05)-
approximate solution path for the three MovieLens
datasets.

Table 1 shows that the dependency of the path com-
plexity on the approximation quality is indeed favor-
ably weak. Here #int denotes the number of intervals
of constant solution with guaranteed "-small duality
gap; �avg

t is the average length of an interval with
constant solution; f train

t
max

is the RMSE on the training
data at the largest parameter value t

max

; and finally
f test

opt

is the best RMSE
test

value obtained over the
entire regularization path.

6 Conclusions

We have presented a simple but e�cient algorithm
that allows to track approximate solutions of param-
eterized semidefinite programs with guarantees along
the entire parameter path. Many well known semidef-
inite optimization problems such as regularized ma-
trix factorization/completion and nuclear norm regu-
larized problems can be approximated e�ciently by
this algorithm. Our experiments show a surprisingly
small path complexity when measured in the number
of intervals of guaranteed "-accurate constant solutions
for the considered problems, even for large matrices.
Thus, the experiments confirm our theoretical result
that the complexity is independent of the input size.

In the future we plan to explore more applications
of parameterized semidefinite optimization in machine
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for many regularized matrix completion and
factorization approaches, as well as nuclear
norm or weighted nuclear norm regularized
convex optimization problems. This also in-
cludes robust PCA and variants of sparse
PCA. On the theoretical side, we show that
the approximate solution path has low com-
plexity. This implies that the whole solution
path can be computed e�ciently. Our experi-
ments demonstrate the practicality of the ap-
proach for large matrix completion problems.

1 Introduction

Our goal is to compute the entire solution path, with
a continuously guaranteed approximation quality, for
parameterized convex problems over the convex do-
main of positive semidefinite matrices with unit trace,
i.e., optimization problems of the form

min
X2Rn⇥n

ft(X)

s.t. Tr(X) = 1
X ⌫ 0

(1)

where ft is a family of convex functions, parameterized
by t 2 R, that is defined on symmetric matrices n⇥ n
matrices X.
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Motivation and Applications. Parameterized op-
timization problems of the above form have applica-
tions in various areas such as control theory or multi-
objective optimization. Our work here is mainly moti-
vated by nuclear norm regularized optimization prob-
lems, which have become central to many applications
in machine learning and compressed sensing, as for
example low-rank recovery [Fazel et al., 2001, Candes
and Recht, 2009, Candès and Tao, 2010], robust PCA
[Candes et al., 2011], and matrix completion [Srebro
et al., 2004, Rennie and Srebro, 2005, Webb, 2006, Lin,
2007, Koren et al., 2009, Takács et al., 2009, Salakhut-
dinov and Srebro, 2010], and where the right parame-
ter selection is often a non-trivial task

Formally, our work is motivated by parameterized op-
timization problems of the form

min
Z2Rm⇥n

f(Z) + � kZk⇤ (2)

for a convex function f (the loss function), where k.k⇤
is the nuclear norm. The equivalent constrained for-
mulation for these problems reads as

min
Z2Rm⇥n

f(Z)

s.t. kZk⇤  t
2

(3)

Both problems are parameterized by a real regular-
ization parameter, � or t, respectively. To relate
the nuclear norm regularized Problems (2) and (3)
to semidefinite optimization, a straightforward trans-
formation (see for example [Fazel et al., 2001, Srebro
et al., 2004, Jaggi and Sulovský, 2010]) comes to help,
which along the way also explains why the nuclear
norm is widely called the trace norm: any problem
of the form of Problem (3) is equivalent to optimizing

ft(X) := f̂

✓
t

✓
V Z
ZT W

◆◆
:= f(tZ) (4)

over positive semidefinite (m+ n)⇥ (m+ n)-matrices
X with unit trace, where Z 2 Rm⇥n is the upper right
part of X and V and W are symmetric (m⇥m)- and
(n ⇥ n)-matrices, respectively. Note that ft is convex
whenever f is convex.
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see for example [Nakatsukasa, 2010]. Since the matrix
spectral norm always satisfies kEk

2

 kEkF , applying
Weyl’s theorem to A0 = �rft0(X) and A = �rft(X)
gives

|�
max

(�rft0(X))� �
max

(�rft(X))|
 krft0(X)�rft(X)kF .

(5)

It remains to upper bound the term

X • (rft0(X)�rft(X)),

which can be done by using the Cauchy-Schwarz in-
equality

|X • (rft0(X)�rft(X))|
 kXkF · krft0(X)�rft(X)kF .

Hence, the inequality in the assumption of this
lemma implies that the inequality in the statement
of Lemma 4 holds, for X 0 = X, from which we obtain
our claimed approximation guarantee gt0(X)  ".

Using this Lemma we can now prove the main theorem
on the solution path complexity.

Theorem 6. Let ft be convex and continuously di↵er-
entiable in X, and let rft(X) be Lipschitz continuous
in t with Lipschitz constant L, for all feasible X. Then
the "-approximation path complexity of Problem (1)
over the parameter range [t

min

, t
max

] ⇢ R is at most

⇠
2L · �
� � 1

· tmax

� t
min

"

⇡
= O

✓
1

"

◆
.

Proof. In order for the condition of Lemma 5 to be
satisfied, we first use that for any X ⌫ 0,Tr(X)  1,

(1 + kXkF ) krft0(X)�rft(X)kF
 (1 + kXkF ) · L · |t0 � t|
 2 · L · |t0 � t|.

Here L is the maximum of the Lipschitz constants with
respect to t of the derivatives rft(X), taken over the
compact feasible domain for X. So if we require the
intervals to be of length

|t0 � t|  "

2L

✓
1� 1

�

◆
,

we have that the condition in Lemma 5 is satisfied for
any X ⌫ 0,Tr(X)  1.

The claimed bound on the path complexity follows di-
rectly by dividing the length |t

max

� t
min

| of the pa-

rameter range by "
2L

⇣
1� 1

�

⌘
.

Optimality. The path complexity result in Theo-
rem 6 is indeed worst-case optimal, which can be seen
as follows: when rft(X) does e↵ectively change with
t with a rate of LX (here LX is the Lipschitz constant
with respect to t of rft(X)), then the interval length
where gt(X)  " holds can not be longer than ⇥(").

3.2 Algorithms for Approximate Solution
Paths

The straightforward analysis from above does not only
give optimal bounds on the path complexity, but
Lemma 4 also immediately suggests a simple algorithm
to compute "-approximate solution paths, which is de-
picted in Algorithm 1. Furthermore, the lemma im-
plies that we can e�ciently compute the exact largest
possible interval length locally for each pair (X, t) in
practice. In those regions where ft changes only slowly
in t, this fact makes the algorithm much more e�cient
than if we would just work with the guaranteed O(")
worst-case upper bound on the interval lengths, i.e.,
the step-size automatically adapts to the local com-
plexity of ft.

Algorithm 1 Approximate Solution Path
Input: Convex function ft, tmin

, t
max

, ", �
Output: "-approximate solution path for

Problem (1)

Set t := t
min

.
repeat

Compute an "
� -approximation X

at parameter value t.
Compute t0 > t such that

(1 + kXkF ) krft0(X)�rft(X)kF
 "

⇣
1� 1

�

⌘
.

Update t := t0.
until t � t

max

By Theorem 6, the running time of Algorithm 1 is
in O

�
T
�
"
�

�
/ "

�
, where T ("0) is the time to compute

a single "0-approximate solution for Problem (1) at a
fixed parameter value t.

Plugging-in Existing Optimizers. For complete-
ness, we discuss some of the many solvers that can be
plugged into our path Algorithm 1 to compute a sin-
gle approximate solution. In our experiments we used
Hazan’s algorithm [Hazan, 2008, Jaggi and Sulovský,
2010] because it scales well to large inputs, provides
approximate solutions with guarantees, and only re-
quires a single approximate eigenvector computation
in each of its iterations. The algorithm returns a guar-
anteed "-approximation to problem (1) after at most
O
�
1

"

�
many iterations, and provides a low-rank matrix

factorization of the resulting estimate X for free, i.e.,

Approximate Path Exact Path

"-guarantee on gap, 
continuously along path

exact solution along path

widely applicable and 
practical

problem-specific, practical 
only for some problems

low complexity
O(1/")

complexity can be expo-
nential (in the worst case)

any approx. internal 
optimizer can be used

exact internal optimizers 
are necessary


