
Block-Coordinate Frank-Wolfe for Structural SVMs
Simon Lacoste-Julien b Patrick Pletscher cMark Schmidt bMartin Jaggi a

Stochastic Block-Coordinate  
Frank-Wolfe Optimization for  

Structural SVMs 

�arXiv 2012 – under review... 

�Simon 
�Lacoste-Julien 

Martin 
Jaggi 

Patrick 
Pletscher 

Mark 
Schmidt 

b  INRIA - SIERRA project-team,
   École Normale Supérieure,
   CNRS UMR 8548, Paris, France

a  CMAP - ERC SIPA project,
   École Polytechnique, 
   CNRS UMR 7641, Paris, France

c  Machine Learning Laboratory,
   ETH Zurich, Switzerland

Experimental 
Results

dataset n d

OCR sequence labeling 6251 4028

CoNLL POS sequence labeling 8936 1643026

Matching word alignment 5000 82

comparing block-coordinate Frank-Wolfe (BCFW) to stochastic subgradient (SSG), online exponentiated gradient (EG), 
batch Frank-Wolfe (FW) and cutting plane                     (wavg = weighted averaging of the iterates)

Relation with Batch Subgradient
Can interpret batch subgradient (in the primal) as classic 
Frank-Wolfe (in the dual)

Relation with Cutting Plane
Can interpret cutting plane (SVMstruct, bundle methods) as a 
Frank-Wolfe variant, giving a simpler convergence proof

Relation with Stochastic 
Subgradient (SGD)

Same cheap iteration cost, but we have stronger 
primal-dual guarantees, more robustness, no 
step-size tuning, and faster in experiments

Batch Frank-Wolfe: Block-Coordinate Frank-Wolfe:

Optimization of the Structural SVM Dual

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

Table 1. Convergence rates given in the number of calls to the oracles for di↵erent optimization algorithms for the struc-
tural SVM objective (1) in the case of a Markov random field structure, to reach a specific accuracy " measured for di↵erent
types of gaps, in term of the number of training examples n, regularization parameter �, size of the label space |Y|, max-
imum feature norm R := maxi,y k i(y)k

2

(some minor terms were ignored for succinctness). Table inspired from (Zhang
et al., 2011). Notice that only stochastic subgradient and our proposed algorithm have rates independent of n.

Optimization algorithm Online Primal/Dual Type of guarantee Oracle type # Oracle calls

dual extragradient (Taskar
et al., 2006)

no primal-“dual” saddle point gap Bregman projection O
⇣

nR log |Y|
�"

⌘

online exponentiated gradient
(Collins et al., 2008)

yes dual expected dual error expectation O
⇣

(n+log |Y|)R2

�"

⌘

excessive gap reduction
(Zhang et al., 2011)

no primal-dual duality gap expectation O

✓

nR
q

log |Y|
�"

◆

BMRM (Teo et al., 2010) no primal �primal error maximization O
⇣

nR2

�"

⌘

1-slack SVM-Struct (Joachims
et al., 2009)

no primal-dual duality gap maximization O
⇣

nR2

�"

⌘

stochastic subgradient
(Shalev-Shwartz et al., 2010)

yes primal primal error w.h.p. maximization Õ
⇣

R2

�"

⌘

this paper: stochastic block-
coordinate Frank-Wolfe

yes primal-dual expected duality gap maximization O
⇣

R2

�"

⌘

Thm. 3

of an additional pass through the data3 (which could
be done alongside a full Frank-Wolfe iteration), it al-
lows us to compute a duality gap guarantee that can
be used to decide when to terminate the algorithm.
Our experiments indicate that empirically it converges
faster than other stochastic algorithms for the struc-
tural SVM problem, especially in the realistic setting
where only a few passes through the data are possible.

Although our structural SVM experiments use an ex-
act maximization oracle, the duality gap guarantees,
the optimal step-size, and the computable duality gap
are all still available when only an appropriate approx-
imate maximization oracle is used. Finally, we note
that although the structural SVM problem is what mo-
tivated this work, we expect that the block-coordinate
Frank-Wolfe algorithm may be useful for many other
problems in machine learning where a complicated ob-
jective with block-separable constraints arises.

3Note that one pass through the data is the same cost
as any online method would need to compute the current
primal objective.

Related Work

Block-Coordinate Frank-Wolfe

Convergence:

Error

after     steps.


2nCprod

f

k + 2n

k

(also in duality gap,
and with inexact 
subproblems)

↵(i)

Idea: Combine Coordinate Descent with 
cheaper Frank-Wolfe steps

(pick one single block at random, and perform
 a Frank-Wolfe step affecting only this block)

f(↵)

⇥ · · ·⇥⇥ · · ·⇥
↵(1)

f(↵)

↵(n)

f(↵)

• The optimal step-size can 
be computed in closed-form
(no parameter tuning)

• Duality gap guarantee, 
(e.g. as a stopping criterion)

• Allows use of approximate 
maximization oracles
(weakest / most general oracle)

Short Summary

Contributions
New block-coordinate variant of the 
classic Frank-Wolfe algorithm
(for convex optim. with block-separable constraints)

Giving a new simple online algorithm for 
structural SVMs, with primal-dual convergence 
rate, outperforming existing solvers in practice

Motivation
Despite their wider applicability, optimization 
of structural SVMs remains challenging. A

d
v
a
n

ta
ge

s

Structural SVM

Structured Prediction
Goal: Given a joint “structured” feature map 

1 Structural Support Vector Machines

We first briefly review the standard convex optimization setup for structural
SVMs (??). In structured prediction, the goal is to predict a structured object
y 2 Y(x) (such as a sequence of tags) for a given input x 2 X . In the standard
approach, a structured feature map � : X ⇥ Y ! Rd encodes the relevant
information for input/output pairs, and a linear classifier with parameter w is
defined by

hw(x) = argmax
y2Y

hw,�(x,y)i

Given a labeled training set D = {(xi,yi)}ni=1, w is estimated by solving

min
w, ⇠

�

2
kwk2 + 1

n

n
X

i=1

⇠i (1)

s.t. hw,�(xi,yi)� �(xi,y)
| {z }

=: i(y)

i � L(yi,y)
| {z }

=:Li(y)

�⇠i

8i 2 [n], 8y 2 Y(xi) =: Yi.

Here Li(y) := L(yi,y) denotes the task-dependent structured error of predicting
output y instead of the observed output yi, and this is typically a Hamming
distance between the two labels. The slack variable ⇠i measures the surrogate
loss for the i-th datapoint and � is the regularization parameter. The convex
problem (??) is what ?, Optimization Problem 2 call the n-slack structural SVM
with margin-rescaling. A variant with slack-rescaling was proposed by ?, which
is equivalent to our setting if we replace all vectors  i(y) by Li(y) i(y).

Loss-Augmented Decoding Unfortunately, the above problem can have an
exponential number of constraints due to the combinatorial nature of Y. We can
replace the

P

i |Yi| linear constraints with n piecewise-linear ones by defining
the structured hinge-loss:

H̃i(w) := max
y2Yi

Li(y)� hw, i(y)i
| {z }

=:Hi(y;w)

. (2)

The constraints in (??) can thus be replaced with the non-linear ones ⇠i �
H̃i(w). The computation of the structured hinge-loss for each i amounts to
finding the most “violating” output y for a given input xi, a task which can
be carried out e�ciently in many structured prediction settings (see the intro-
duction). This problem is called the loss-augmented decoding subproblem. In
this paper, we only assume access to an e�cient solver for this subproblem,
and we call such a solver a maximization oracle. The equivalent non-smooth
unconstrained formulation of (??) is:

min
w

�

2
kwk2 + 1

n

n
X

i=1

H̃i(w). (3)

Having a maximization oracle allows us to apply subgradient methods to this
problem (?), as a subgradient of H̃i(w) with respect to w is � i(y⇤

i ), where y
⇤
i

is any maximizer of the loss-augmented decoding subproblem (??).

1

 ,  construct a good linear 
classifier of the form

D
u

al
P

ri
m

al

Maximization oracle
(loss augmented decoding)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(    ,2)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(    ,1)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(    ,0)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(    ,3)Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(    ,4)

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

�(    ,7)

Large margin separation

block-structure!

= structured hinge loss
primal-dual 

correspondence
w = A↵

Challenge: exponential # of variables

Frank-Wolfe  (or conditional gradient)

Constrained Convex 
Optimization
over a compact domain

Sparse Iterates!

Duality Gap
        = efficient certificate 
for approximation quality
g(↵)

(also in duality gap,
and with inexact 
subproblems)

Convergence:

Error

after     steps.k

 2Cf

k + 2

Constant bounded by the Lipschitz constant      of the gradient, Lf Cf  Lf diam(M)2

Idea:	

Minimize a linear approximation

↵

f(↵)

M

f

s

g(↵)
f(↵

) +
⌦
s
0 �↵,r

f(↵
)
↵

The constant              can be much smaller than        .  (For structural SVM,                          )CfCprod

f

nCprod

f

⇡ C
f

1 Some Formulas to Copy to the Slides and Poster

min

w

�

2

kwk2

+

1

n

n
X

i=1

max

n

0, 1�
⌦

w,�(xi)yi

↵

o

min

w

�

2

kwk2

+

1

n

n
X

i=1

max

y2Y

n

L(yi,y)�
⌦

w, �(xi,yi)� �(xi,y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-formulation (??) has m :=

P

i |Yi| variables or potential “support vectors”. Writing ↵i(y) for the dual

variable associated with the training example i and potential output y 2 Yi,

the dual problem is given by

min

↵2Rn·|Y|
f(↵) :=

�
2 kA↵k2 � b

T
↵

s.t.

P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y

Given a dual variable vector ↵, we can use the Karush-Kuhn-Tucker optimality

conditions to obtain the corresponding primal variablesw =

P

i,y2Yi
↵i(y)

 i(y)
�n ,

see Appendix ??.
To simplify notation, we introduce the matrix A 2 Rd⇥m

consisting of the

m columns

A :=

�

1
�n i(y) 2 Rd

�

� i 2 [n],y 2 Y
 

Using A, our primal-dual correspondence between w and ↵ is simply

w = A↵

Further, the dual objective (??) simplifies to f(↵) :=

�
2 kA↵k2 � b

T
↵ =

�
2 kwk2 � b

T
↵ for the fixed vector b 2 Rm

with

b :=

�

1
nLi(y)

�

i2[n],y2Y

1

1 Some Formulas to Copy to the Slides and Poster

min

w

�

2

kwk2

+

1

n

n
X

i=1

max

n

0, 1�
⌦

w,�(xi)yi

↵

o

min

w

�

2

kwk2

+

1

n

n
X

i=1

max

y2Y

n

L(yi,y)�
⌦

w, �(xi,yi)� �(xi,y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-formulation (??) has m :=

P

i |Yi| variables or potential “support vectors”. Writing ↵i(y) for the dual

variable associated with the training example i and potential output y 2 Yi,

the dual problem is given by

min

↵2Rn·|Y|
f(↵) :=

�
2 kA↵k2 � b

T
↵

s.t.

P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y

Given a dual variable vector ↵, we can use the Karush-Kuhn-Tucker optimality

conditions to obtain the corresponding primal variablesw =

P

i,y2Yi
↵i(y)

 i(y)
�n ,

see Appendix ??.
To simplify notation, we introduce the matrix A 2 Rd⇥m

consisting of the

m columns

A :=

�

1
�n i(y) 2 Rd

�

� i 2 [n],y 2 Y
 

Using A, our primal-dual correspondence between w and ↵ is simply

w = A↵

Further, the dual objective (??) simplifies to f(↵) :=

�
2 kA↵k2 � b

T
↵ =

�
2 kwk2 � b

T
↵ for the fixed vector b 2 Rm

with

b :=

�

1
nLi(y)

�

i2[n],y2Y

1

1 Some Formulas to Copy to the Slides and Poster

min

w

�

2

kwk2

+

1

n

n
X

i=1

max

n

0, 1�
⌦

w,�(xi)yi

↵

o

min

w

�

2

kwk2

+

1

n

n
X

i=1

max

y2Y

n

L(yi,y)�
⌦

w, �(xi,yi)� �(xi,y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-formulation (??) has m :=

P

i |Yi| variables or potential “support vectors”. Writing ↵i(y) for the dual

variable associated with the training example i and potential output y 2 Yi,

the dual problem is given by

min

↵2Rn·|Y|
f(↵) :=

�
2 kA↵k2 � b

T
↵

s.t.

P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y

Given a dual variable vector ↵, we can use the Karush-Kuhn-Tucker optimality

conditions to obtain the corresponding primal variablesw =

P

i,y2Yi
↵i(y)

 i(y)
�n ,

see Appendix ??.
To simplify notation, we introduce the matrix A 2 Rd⇥m

consisting of the

m columns

A :=

�

1
�n i(y) 2 Rd

�

� i 2 [n],y 2 Y
 

Using A, our primal-dual correspondence between w and ↵ is simply

w = A↵

Further, the dual objective (??) simplifies to f(↵) :=

�
2 kA↵k2 � b

T
↵ =

�
2 kwk2 � b

T
↵ for the fixed vector b 2 Rm

with

b :=

�

1
nLi(y)

�

i2[n],y2Y

1

1 Some Formulas to Copy to the Slides and Poster

min

w

�

2

kwk2

+

1

n

n
X

i=1

max

n

0, 1�
⌦

w,�(xi)yi

↵

o

min

w

�

2

kwk2

+

1

n

n
X

i=1

max

y2Y

n

L(yi,y)�
⌦

w, �(xi,yi)� �(xi,y)
| {z }

=: i(y)

↵

o

The Dual The Lagrange dual of the above n-slack-formulation (??) has m :=

P

i |Yi| variables or potential “support vectors”. Writing ↵i(y) for the dual

variable associated with the training example i and potential output y 2 Yi,

the dual problem is given by

min

↵2Rn·|Y|
f(↵) :=

�
2 kA↵k2 � b

T
↵

s.t.

P

y2Y ↵i(y) = 1 8i 2 [n]

and ↵i(y) � 0 8i 2 [n], 8y 2 Y

Given a dual variable vector ↵, we can use the Karush-Kuhn-Tucker optimality

conditions to obtain the corresponding primal variablesw =

P

i,y2Yi
↵i(y)

 i(y)
�n ,

see Appendix ??.
To simplify notation, we introduce the matrix A 2 Rd⇥m

consisting of the

m columns

A :=

�

1
�n i(y) 2 Rd

�

� i 2 [n],y 2 Y
 

Using A, our primal-dual correspondence between w and ↵ is simply

w = A↵

Further, the dual objective (??) simplifies to f(↵) :=

�
2 kA↵k2 � b

T
↵ =

�
2 kwk2 � b

T
↵ for the fixed vector b 2 Rm

with

b :=

�

1
nLi(y)

�

i2[n],y2Y

1

min
↵2M

f(↵)

1

The gradient of f(↵) takes the simple form rf(↵) = �ATA↵�b = �AT
w�b.

Finally, note that the domain M ⇢ Rm of (??) is the product of n probability
simplices, M := �|Y

1

| ⇥ . . .⇥�|Yn|.

2 The Frank-Wolfe Algorithm

We consider the convex optimization problem

min
↵2M

f(↵)

, where the convex feasible set M is compact and the convex objective f is
continuously di↵erentiable. The Frank-Wolfe algorithm Frank:1956vp (listed in
Algorithm ??) is an iterative optimization algorithm for such problems that
only requires optimizing linear functions over M, and thus has wider applica-
bility than projected gradient algorithms, which require optimizing a quadratic
function over M. At every iteration, a feasible search corner s is first found by
minimizing over M the linearization of f at the current iterate ↵ (see picture
in inset).

The next iterate is then obtained as a convex combination of s and the
previous iterate, with step-size �. These simple updates yield two additional
interesting properties. First, every iterate ↵

(k) can be written as a convex
combination of the starting point ↵(0) and the search corners s found previously.
The parameter ↵(k) thus has a sparse representation, which makes the algorithm
suitable even for cases where the dimensionality of ↵ is exponential. Second,
since f is convex, the minimum of the linearization of f over M immediately
gives a lower bound on the value of the yet unknown optimal solution f(↵⇤).
Every step of the algorithm thus computes for free the following “linearization
duality gap” defined for any feasible point ↵ 2 M (which is in fact a special
case of the Fenchel duality gap as explained in Appendix ??):

g(↵) := max
s02M

h↵� s

0,rf(↵)i = h↵� s,rf(↵)i. (1)

As g(↵) � f(↵) � f(↵⇤) by the above argument, s thus readily gives at each
iteration the current duality gap as a certificate for the current approximation
quality (?), allowing us to monitor the convergence, and more importantly to
choose the theoretically sound stopping criterion g(↵(k))  ".

Algorithm 1 Frank-Wolfe

Let ↵(0) 2 M
for k = 0 . . .K do

Compute s := argmin
s02M

D

s

0,rf(↵(k))
E

Let � := 2
k+2 , or find the optimal �

Update ↵

(k+1) := (1� �)↵(k) + �s
end for

2

Algorithm 2 Bla

bla

Algorithm 3 Block-Coordinate Frank-Wolfe

Let ↵(0) 2 M = M(1) ⇥ . . .⇥M(n)

for k = 0 . . .K do

Pick i 2u.a.r. [n]

Find s(i) := argmin
s0
(i)

2M(i)

D

s

0
(i),r(i)f(↵

(k))
E

Let � := 2n
k+2n , or find the optimal �

Update ↵

(k+1)
(i) := ↵

(k)
(i) + �

�

s(i) �↵

(k)
(i)

�

end for

In terms of convergence, it is known that after O(1/") iterations, Algorithm 1
obtains an "-approximate solution (??) as well as a guaranteed "-small duality
gap (??), along with a certificate to (1). For the convergence results to hold, the
internal linear subproblem does not need be solved exactly, but only to some
error. We review and generalize the convergence proof in Appendix ??. The
constant hidden in the O(1/") notation is the curvature constant Cf (alterna-
tively also called the strong smoothness constant of f), which corresponds to a
Lipschitz-continuity-assumption on the gradient, see e.g. our Appendix ?? for
a formal definition.

3 Faster Block-Coordinate Frank-Wolfe

A major disadvantage of the standard Frank-Wolfe algorithm when applied
to the structural SVM problem is that each iteration requires a full pass through
the data, resulting in n calls to the maximization oracle. In this section we
present the main new contribution of the paper, a block-coordinate general-
ization of the Frank-Wolfe algorithm that maintains all appealing properties
of Frank-Wolfe, but yields much cheaper iterations, requiring only one call to
the maximization oracle in the context of structural SVMs. The new method
is given in Algorithm 2, and applies to any constrained convex optimization
problem of the form

min
↵2M(1)⇥...⇥M(n)

f(↵) , (2)

where the domain has the structure of a Cartesian product M = M(1) ⇥ . . .⇥
M(n) ✓ Rm over n � 1 blocks. The main idea of the method is to perform
cheaper update steps that only a↵ect a single variable block M(i), and not
all of them simultaneously. This is motivated by coordinate descent methods,
which have a very successful history when applied to large scale optimization.
Here we assume that each factor M(i) ✓ Rmi is convex and compact, with
m =

Pn
i=1 mi. We will write ↵(i) 2 Rmi for the i-th block of coordinates of a

vector ↵ 2 Rm. In each step, Algorithm 2 picks one of the n blocks uniformly

3

Algorithm 4 BCFW for Structural SVM

Let w(0) := wi
(0) := 0

for k = 0 . . .K do

Pick i 2u.a.r. [n]
Solve y

⇤
i := argmax

y2Yi

Hi(y;w
(k))

Let ws := 1
�n i(y

⇤
i )

Let � := 2n
k+2n , or find the optimal �

Update wi
(k+1) := (1� �)wi

(k) + �ws

Update w

(k+1) := w

(k) +wi
(k+1) �wi

(k)

end for

at random, and leaves all other blocks unchanged. If there is only one block
(n = 1), then Algorithm 2 becomes the standard Frank-Wolfe Algorithm 1.
The algorithm can be interpreted as a simplification of Nesterov’s “huge-scale”
uniform coordinate descent method (?, Section 4). Here, instead of computing
a proximal operator on a block (which is intractable for structural SVMs), we
only need to solve one linear subproblem in each iteration, which for structural
SVMs is equivalent to a call to the maximization oracle.

Convergence Results The following main theorem shows that after O(1/")
many iterations, Algorithm 2 obtains an "-approximate solution to (2), and

guaranteed "-small duality gap. Here the constant Cprod

f :=
Pn

i=1 C
(i)
f is the

sum of the (partial) curvature constants of f with respect to the individual
domain block M(i). We discuss this Lipschitz-assumption on the gradient in
more detail in Appendix ??, and will compute this constant precisely for the
structural SVM. In the following convergence results, h0 := f(↵(0)) � f(↵⇤)
is the initial error at the starting point of the algorithm, and ↵⇤ 2 M is an
optimal solution. Proofs are provided in Appendix ??.

Theorem 1. For each k � 0, the iterate ↵

(k)
of Algorithm 2 (either using

the predefined step-sizes, or using line-search) satisfies E
⇥

f(↵(k))
⇤

� f(↵⇤) 
2n

k+2n

�

2Cprod

f + h0

�

, where ↵⇤ 2 M is a solution to problem (2), and the expec-

tation is over the random choice of the block i in the steps of the algorithm.

Furthermore, if Algorithm 2 is run for K � 2 iterations, then it has an

iterate ↵

(k̂)
, 1  k̂  K, with duality gap bounded by E

⇥

g(↵(k̂))
⇤

 6n
K

�

2Cprod

f +
h0) .

Application to the Structural SVM Algorithm 3 applies the block-coordinate
Frank-Wolfe algorithm to the structural SVM dual problem (??), maintaining
only the primal variables w. We see that Algorithm 3 is equivalent to Algo-
rithm 2, by observing that the corresponding primal updates become ws = As[i]

and `s = b

T
s[i]. Here s[i] is the zero-padding of s(i) := e

y⇤
i 2 M(i) so that

s[i] 2 M. Note that Algorithm 3 has a primal parameter vector wi for each
datapoint i, but that this does not significantly increase the storage cost of the

4

1 Structural Support Vector Machines

We first briefly review the standard convex optimization setup for structural
SVMs (??). In structured prediction, the goal is to predict a structured object
y 2 Y(x) (such as a sequence of tags) for a given input x 2 X . In the standard
approach, a structured feature map � : X ⇥ Y ! Rd encodes the relevant
information for input/output pairs, and a linear classifier with parameter w is
defined by

hw(x) = argmax
y2Y

hw,�(x,y)i

Given a labeled training set D = {(xi,yi)}ni=1, w is estimated by solving

min
w, ⇠

�

2
kwk2 + 1

n

n
X

i=1

⇠i (1)

s.t. hw,�(xi,yi)� �(xi,y)
| {z }

=: i(y)

i � L(yi,y)
| {z }

=:Li(y)

�⇠i

8i 2 [n], 8y 2 Y(xi) =: Yi.

Here Li(y) := L(yi,y) denotes the task-dependent structured error of predicting
output y instead of the observed output yi, and this is typically a Hamming
distance between the two labels. The slack variable ⇠i measures the surrogate
loss for the i-th datapoint and � is the regularization parameter. The convex
problem (??) is what ?, Optimization Problem 2 call the n-slack structural SVM
with margin-rescaling. A variant with slack-rescaling was proposed by ?, which
is equivalent to our setting if we replace all vectors  i(y) by Li(y) i(y).

Loss-Augmented Decoding Unfortunately, the above problem can have an
exponential number of constraints due to the combinatorial nature of Y. We can
replace the

P

i |Yi| linear constraints with n piecewise-linear ones by defining
the structured hinge-loss:

H̃i(w) := max
y2Yi

Li(y)� hw, i(y)i
| {z }

=:Hi(y;w)

. (2)

The constraints in (??) can thus be replaced with the non-linear ones ⇠i �
H̃i(w). The computation of the structured hinge-loss for each i amounts to
finding the most “violating” output y for a given input xi, a task which can
be carried out e�ciently in many structured prediction settings (see the intro-
duction). This problem is called the loss-augmented decoding subproblem. In
this paper, we only assume access to an e�cient solver for this subproblem,
and we call such a solver a maximization oracle. The equivalent non-smooth
unconstrained formulation of (??) is:

min
w

�

2
kwk2 + 1

n

n
X

i=1

H̃i(w). (3)

Having a maximization oracle allows us to apply subgradient methods to this
problem (?), as a subgradient of H̃i(w) with respect to w is � i(y⇤

i ), where y
⇤
i

is any maximizer of the loss-augmented decoding subproblem (??).

1

Duality gap        after               iterations
   (iteration cost:  n oracle calls)

 " Duality gap        after               iter.
   (iteration cost:  one oracle call)

 "O
⇣

R2

�"

⌘
O
⇣

R2

�"

⌘

Problem: Minimize a convex function 
over block-separable compact constraints

↵ = (↵(1), . . . ,↵(n))
RmnRm1

✓ ✓

min
↵2M(1)⇥...⇥M(n)

f(↵) (1)

1

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

20 40 60 80 100 120 140
10�2

10�1

100

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

(a) OCR dataset, � = 0.01.

20 40 60 80 100 120 140

10�1

100

101

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

(b) OCR dataset, � = 0.001.

20 40 60 80 100 120 140

10�1

100

101

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
BCFW-wavg

SSG
SSG-wavg
online-EG

FW
cutting plane

(c) OCR dataset, � = 1/n.

10�1 100 101

10�2

10�1

100

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
BCFW-wavg

SSG
SSG-wavg

FW
cutting plane

(d) CoNLL dataset, � = 1/n.

10�1 100 101
0.040

0.060

0.080

0.100

e↵ective passes

te
st

er
ro
r

(e) Test error for � = 1/n on CoNLL.

10�2 10�1 100 101
10�4

10�3

10�2

10�1

100

101

102

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
BCFW-wavg

SSG
SSG-wavg

FW
cutting plane

(f) Matching dataset, � = 0.001.

Figure 1. The shaded areas for the stochastic methods (BCFW, SSG and online-EG) indicate the worst and best objective
achieved in 10 randomized runs. The top row compares the suboptimality achieved by di↵erent solvers for di↵erent
regularization parameters �. For large � (a), the stochastic algorithms (BCFW and SSG) perform considerably better
than the batch solvers (cutting plane and FW ). For a small � (c), even the batch solvers achieve a lower objective earlier
on than SSG. Our proposed BCFW algorithm achieves a low objective in both settings. (d) shows the convergence for
CoNLL with the first passes in more details. Here BCFW already results in a low objective even after seeing only few
datapoints. The advantage is less clear for the test error in (e) though, where SSG-wavg does surprisingly well. Finally,
(f) compares the methods for the matching prediction task.

in the caption, while additional experiments can be
found in Appendix F. In most of the experiments, the
BCFW-wavg method dominates all competitors. The
superiority is especially striking for the first few itera-
tions, and when using a small regularization strength
�, which is often needed in practice. In term of test
error, a peculiar observation is that the weighted av-
erage of the iterates seems to help both methods sig-
nificantly: SSG-wavg sometimes slightly outperforms
BCFW-wavg despite having the worst objective value
amongst all methods. This phenomenon is worth fur-
ther investigation.

7. Related Work

There has been substantial work on dual coordinate
descent for SVMs, including the original sequential
minimal optimization (SMO) algorithm. The SMO al-
gorithm was generalized to structural SVMs (Taskar,
2004, Chapter 6), but its convergence rate scales badly
with the size of the output space: it was estimated
as O (n|Y|/�") in Zhang et al. (2011). Further, this
method requires an expectation oracle to work with

its factored dual parameterization. As in our algo-
rithm, Rousu et al. (2006) propose updating one train-
ing example at a time, but using multiple Frank-Wolfe
updates to optimize along the subspace. However,
they do not obtain any rate guarantees and their algo-
rithm is less general because it again requires an ex-
pectation oracle. In the degenerate binary SVM case,
our block-coordinate Frank-Wolfe algorithm is actu-
ally equivalent to the method of Hsieh et al. (2008),
where because each datapoint has a unique dual vari-
able, exact coordinate optimization can be accom-
plished by the line-search step of our algorithm. Hsieh
et al. (2008) show a local linear convergence rate in the
dual, and our results complement theirs by providing
a global primal convergence guarantee for their algo-
rithm of O (1/"). After our paper had appeared on
arXiv, Shalev-Shwartz & Zhang (2012) have proposed
a generalization of dual coordinate descent applicable
to several regularized losses, including the structural
SVM objective. Despite being motivated from a di↵er-
ent perspective, a version of their algorithm (Option II
of Figure 1) gives the exact same step-size and update
direction as BCFW with line-search, and their Corol-

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

20 40 60 80 100 120 140
10�2

10�1

100

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

(a) OCR dataset, � = 0.01.

20 40 60 80 100 120 140

10�1

100

101

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

(b) OCR dataset, � = 0.001.

20 40 60 80 100 120 140

10�1

100

101

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
BCFW-wavg

SSG
SSG-wavg
online-EG

FW
cutting plane

(c) OCR dataset, � = 1/n.

10�1 100 101

10�2

10�1

100

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
BCFW-wavg

SSG
SSG-wavg

FW
cutting plane

(d) CoNLL dataset, � = 1/n.

10�1 100 101
0.040

0.060

0.080

0.100

e↵ective passes

te
st

er
ro
r

(e) Test error for � = 1/n on CoNLL.

10�2 10�1 100 101
10�4

10�3

10�2

10�1

100

101

102

e↵ective passes

p
ri
m
al

su
b
op

ti
m
al
it
y
fo
r
p
ro
b
le
m

(1
)

BCFW
BCFW-wavg

SSG
SSG-wavg

FW
cutting plane

(f) Matching dataset, � = 0.001.

Figure 1. The shaded areas for the stochastic methods (BCFW, SSG and online-EG) indicate the worst and best objective
achieved in 10 randomized runs. The top row compares the suboptimality achieved by di↵erent solvers for di↵erent
regularization parameters �. For large � (a), the stochastic algorithms (BCFW and SSG) perform considerably better
than the batch solvers (cutting plane and FW ). For a small � (c), even the batch solvers achieve a lower objective earlier
on than SSG. Our proposed BCFW algorithm achieves a low objective in both settings. (d) shows the convergence for
CoNLL with the first passes in more details. Here BCFW already results in a low objective even after seeing only few
datapoints. The advantage is less clear for the test error in (e) though, where SSG-wavg does surprisingly well. Finally,
(f) compares the methods for the matching prediction task.

in the caption, while additional experiments can be
found in Appendix F. In most of the experiments, the
BCFW-wavg method dominates all competitors. The
superiority is especially striking for the first few itera-
tions, and when using a small regularization strength
�, which is often needed in practice. In term of test
error, a peculiar observation is that the weighted av-
erage of the iterates seems to help both methods sig-
nificantly: SSG-wavg sometimes slightly outperforms
BCFW-wavg despite having the worst objective value
amongst all methods. This phenomenon is worth fur-
ther investigation.

7. Related Work

There has been substantial work on dual coordinate
descent for SVMs, including the original sequential
minimal optimization (SMO) algorithm. The SMO al-
gorithm was generalized to structural SVMs (Taskar,
2004, Chapter 6), but its convergence rate scales badly
with the size of the output space: it was estimated
as O (n|Y|/�") in Zhang et al. (2011). Further, this
method requires an expectation oracle to work with

its factored dual parameterization. As in our algo-
rithm, Rousu et al. (2006) propose updating one train-
ing example at a time, but using multiple Frank-Wolfe
updates to optimize along the subspace. However,
they do not obtain any rate guarantees and their algo-
rithm is less general because it again requires an ex-
pectation oracle. In the degenerate binary SVM case,
our block-coordinate Frank-Wolfe algorithm is actu-
ally equivalent to the method of Hsieh et al. (2008),
where because each datapoint has a unique dual vari-
able, exact coordinate optimization can be accom-
plished by the line-search step of our algorithm. Hsieh
et al. (2008) show a local linear convergence rate in the
dual, and our results complement theirs by providing
a global primal convergence guarantee for their algo-
rithm of O (1/"). After our paper had appeared on
arXiv, Shalev-Shwartz & Zhang (2012) have proposed
a generalization of dual coordinate descent applicable
to several regularized losses, including the structural
SVM objective. Despite being motivated from a di↵er-
ent perspective, a version of their algorithm (Option II
of Figure 1) gives the exact same step-size and update
direction as BCFW with line-search, and their Corol-

Key Insight: Frank-Wolfe step = Maximization oracle


