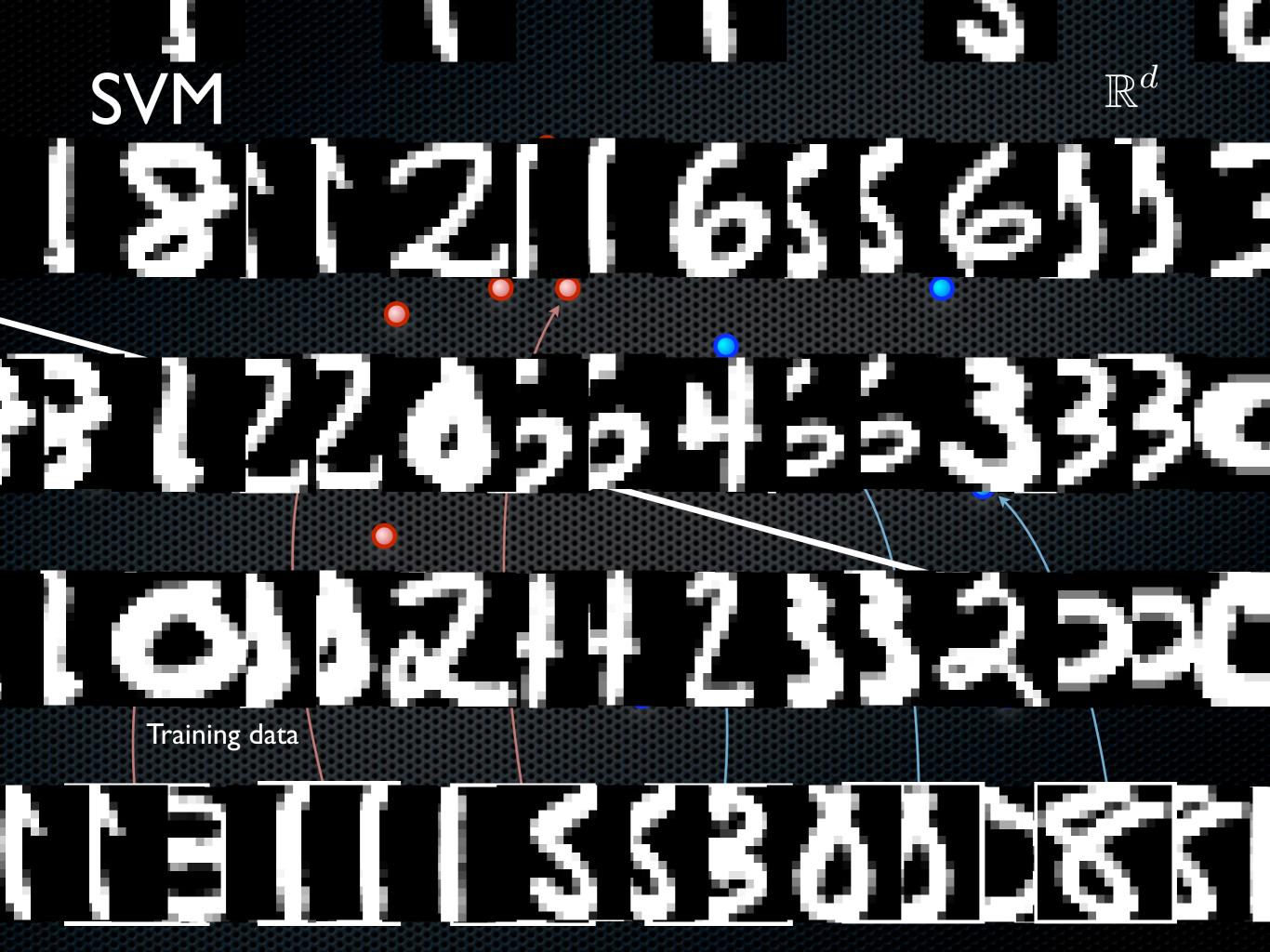
Connections between the Lasso and Support Vector Machines

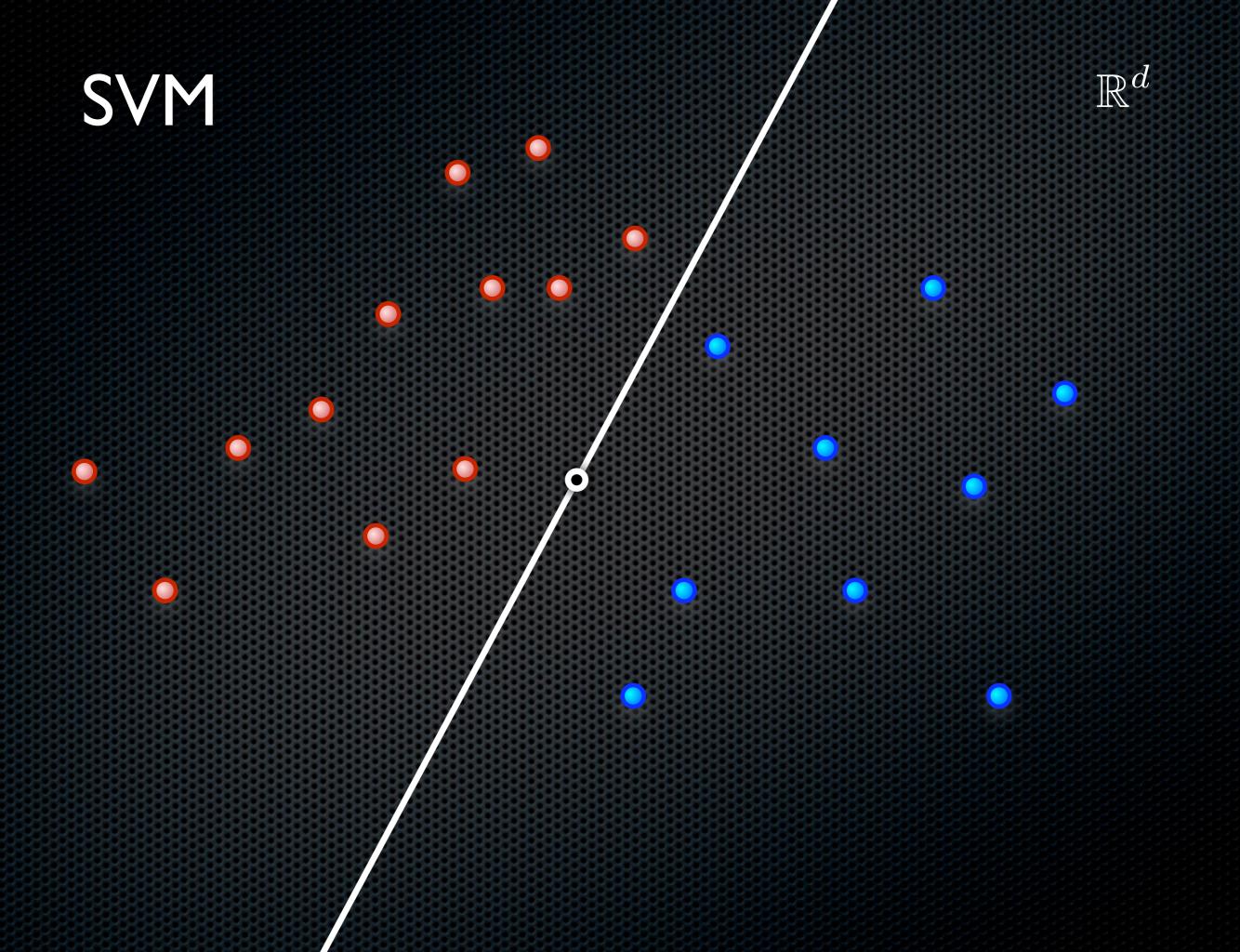
Martin Jaggi Ecole Polytechnique 2013 / 07 / 08

ROKS '13 - International Workshop on Advances in Regularization, Optimization, Kernel Methods and Support Vector Machines: Theory and Applications

Outline

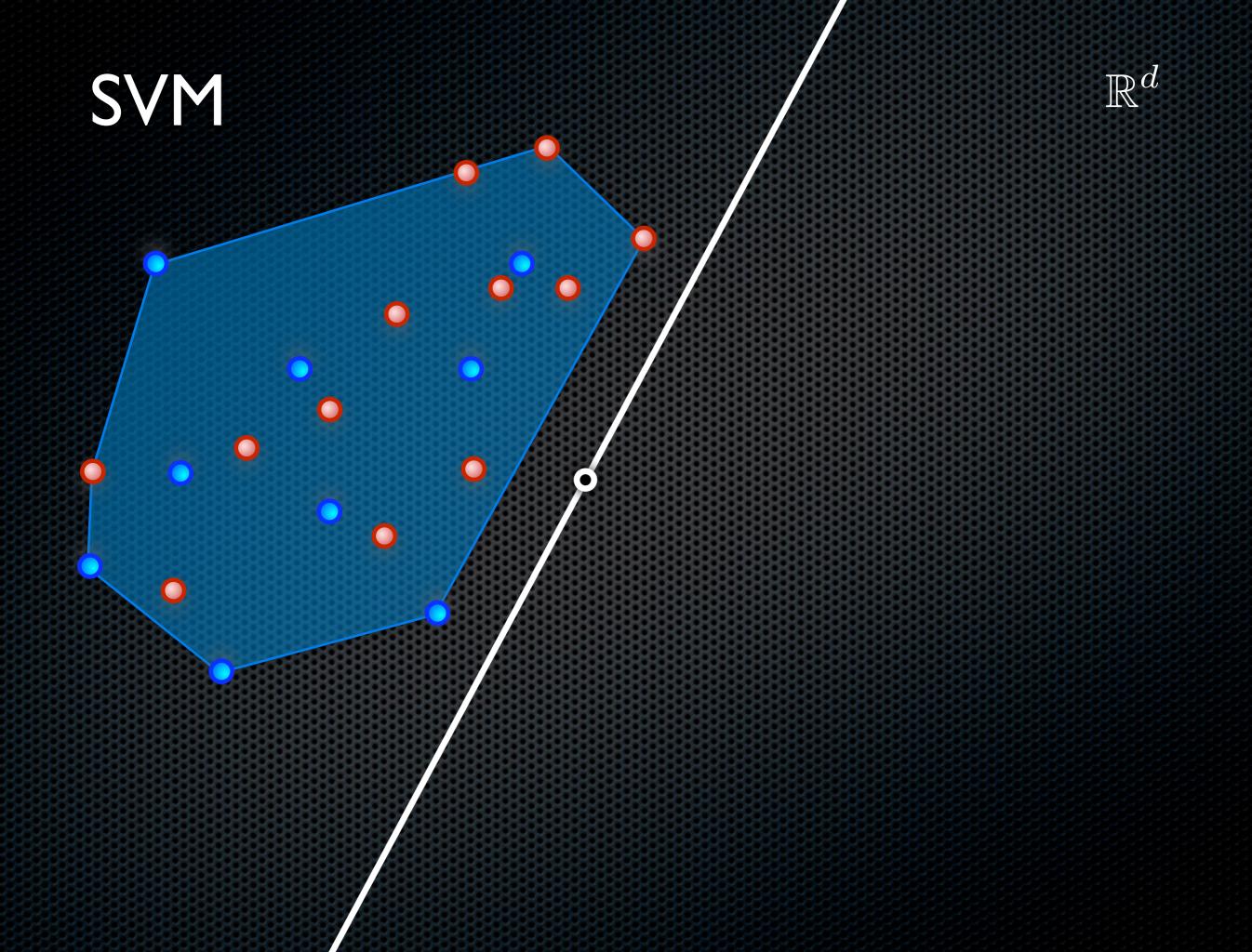
- An Equivalence between the Lasso and Support Vector Machines
 - Reduction from Lasso to SVM
 - Reduction from SVM to Lasso
 - Applications
- Greedy Algorithms (from optimization and signal processing)





 \mathbb{R}^{d}

SVM



Polytope distance

 $\boldsymbol{\mathcal{U}}$

 w^*

n points in \mathbb{R}^d

 $A \in \mathbb{R}^{d \times n}$

$$\min_{x \in \Delta} \|Ax\|^2$$

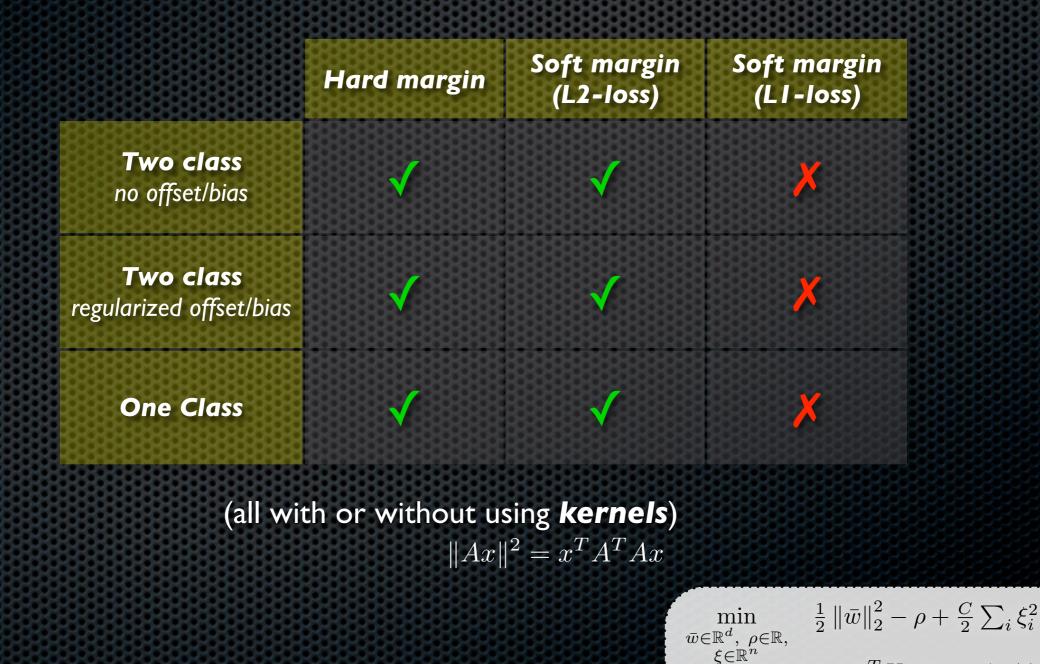
$A \in \mathbb{R}^{d \times n}$

s.t. $y_i \cdot \bar{w}^T X_i \ge \rho - \xi_i \quad \forall i \in [1..n]$

SVM variants

whose dual problem is of the form

 $\min_{x \in \Delta} \|Ax\|^2$

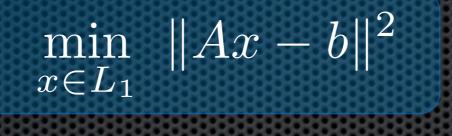


Lasso = ℓ_1 -regularized least squares **regression**

$$\min_{\|x\|_1 \le t} \|Ax - b\|^2$$

Feature selection

Lasso = ℓ_1 -regularized least squares **regression**

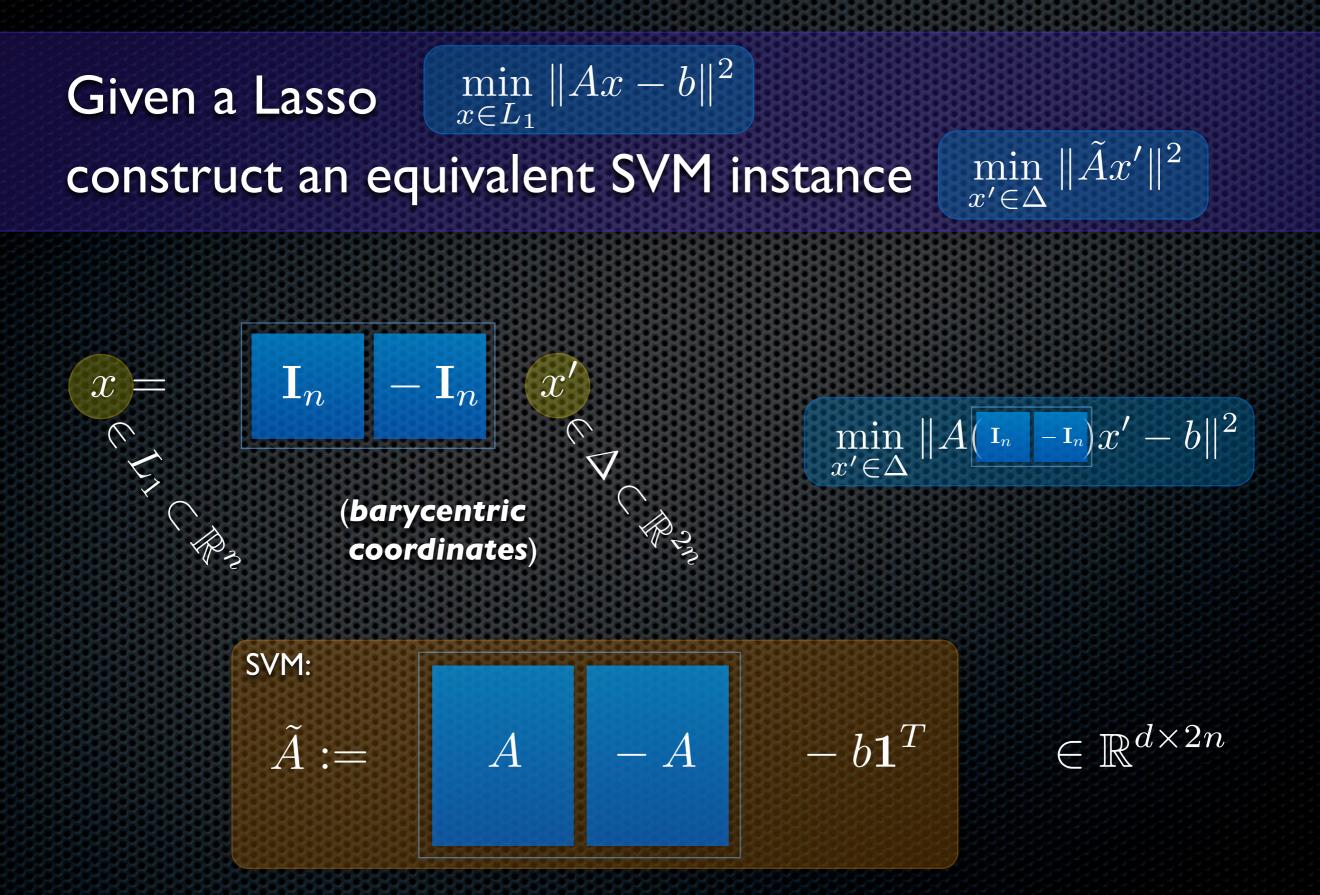


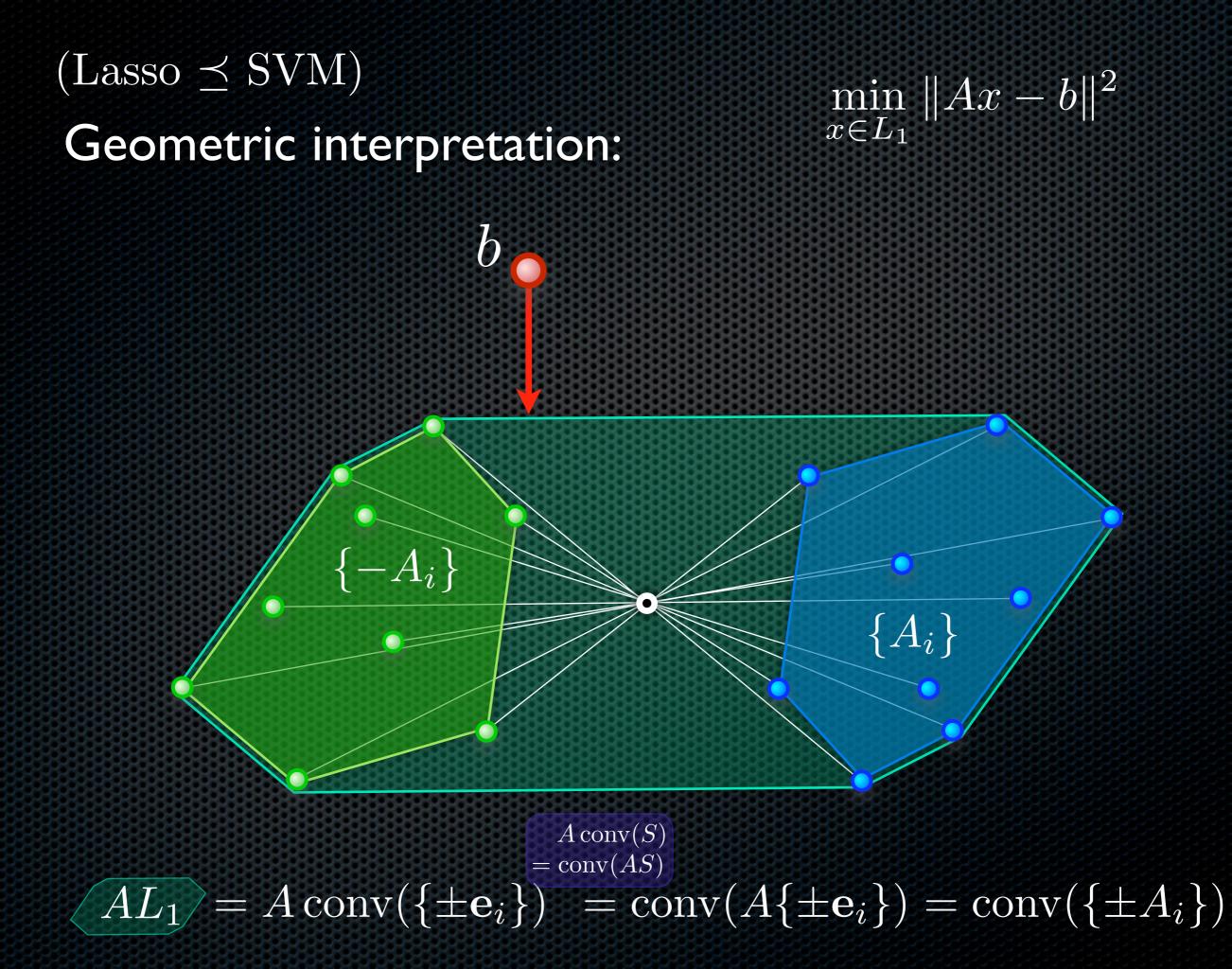
$$L_1 := \{x \in \mathbb{R}^n \mid ||x||_1 \le 1\}$$
$$= \operatorname{conv}(\{\pm \mathbf{e}_i\})$$

- Sparse regression
- Feature selection

 $(Lasso \leq SVM)$

 $A \in \mathbb{R}^{d \times n}$ $b \in \mathbb{R}^d$





 $(SVM \preceq Lasso)$

$$A \in \mathbb{R}^{d \times n}$$

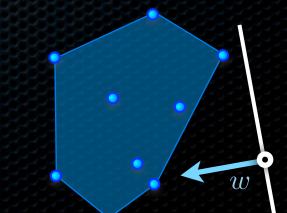
Given an SVM
$$\min_{x \in \Delta} ||Ax||^2$$
construct an equivalent Lasso instance $\min_{x \in L_1} ||\tilde{A}x - \tilde{b}||^2$

more challenging reduction!

A second constants
$$\widetilde{A} := A + \widetilde{b} \mathbf{1}^T$$

 $\widetilde{b} \propto -w$

$$\in \mathbb{R}^{d \times n}$$



w weakly separating for A

$(SVM \preceq Lasso)$ Geometric interpretation:

$$\begin{aligned} \tilde{A} &:= A + \tilde{b} \mathbf{1}^T \\ \tilde{b} &\propto -w \end{aligned} \in \mathbb{R}^{d \times n}$$

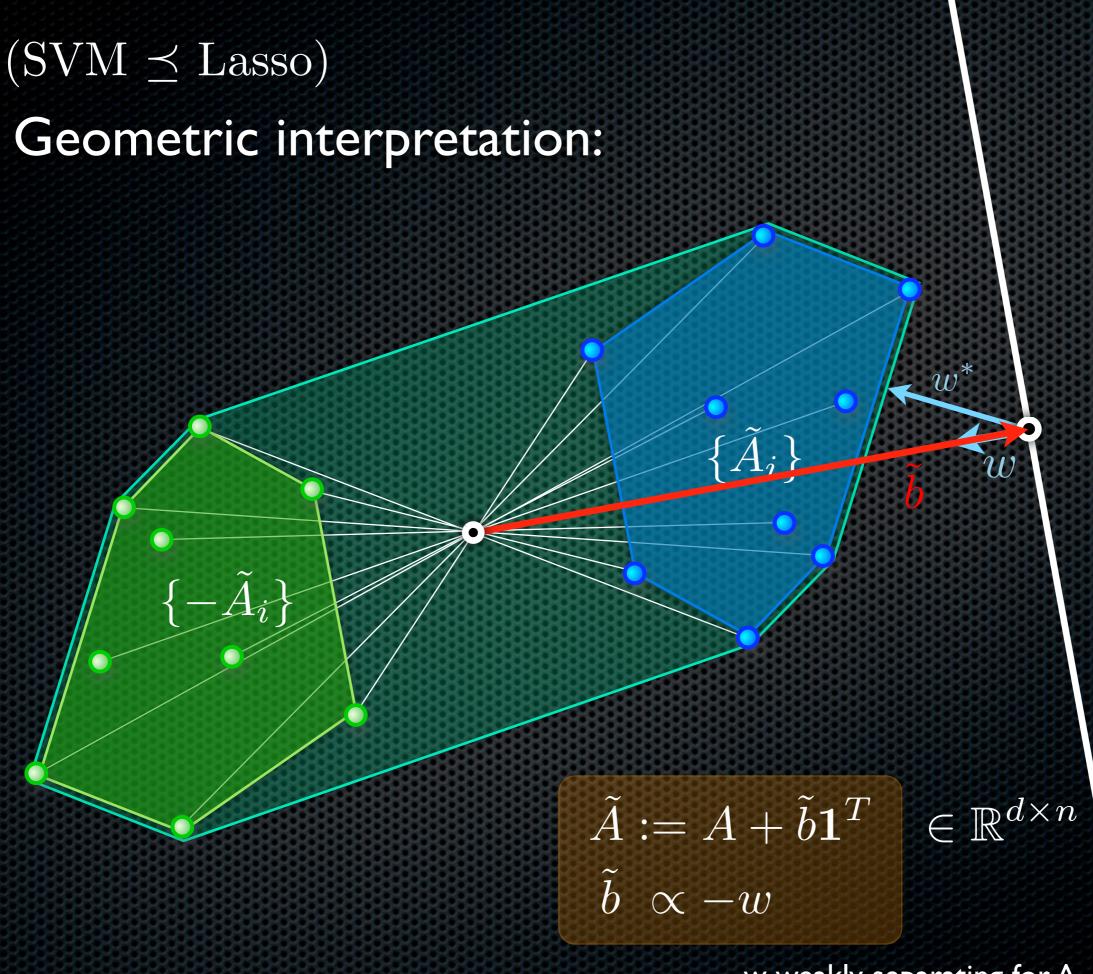
 $\{\tilde{A}_i\}$

w weakly separating for A

 w^*

•

 \overline{w}



w weakly separating for A

$(SVM \leq Lasso)$

Properties of the constructed Lasso instance

$$\min_{x \in L_1} \|\tilde{A}x - \tilde{b}\|^2$$

Theorem:

For any $x \in L_1$ for the Lasso, there is a vector $x' \in \Delta$, of the same or better Lasso objective. This $x' \in \Delta$ attains the same objective in the SVM.

$$\begin{split} \tilde{A} &:= A + \tilde{b} \mathbf{1}^T \\ \tilde{b} &\propto -w \end{split} \in \mathbb{R}^{d \times n} \end{split}$$

w weakly separating for A

w

11

 \tilde{A}_i

Implications:

Algorithms apply to both problems

sublinear time algorithms $ilde{O}(n+d)$

Implications for Lasso

Kernelized version

$$\min_{x \in L_1} \left\| \sum_i \Psi(A_i) x_i - \Psi(b) \right\|_{\mathcal{H}}^2$$

defined in terms of $\kappa(A_i, A_j), \ \kappa(A_i, b), \ \kappa(b, b)$

 $\kappa(y,z) = \langle \Psi(y), \overline{\Psi(z)} \rangle$

Implications for SVMs

Support vectors
 = non-zeros in the Lasso solution
 • number of SVs

Implications for SVMs

Support vectors
 = non-zeros in the Lasso solution
 • number of SVs

20

 Screening rules (discard points which can be guaranteed to be non-SVs)

Implications for SVMs

Support vectors
non-zeros in the Lasso solution
number of SVs
Screening rules
(discard points which can be

guaranteed to be non-SVs)

Convex optimization

methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$

Frank-Wolfe

Signal processing

sparse recovery methods

Convex optimization
methods applied to $min ||Ax - b||^2$ $x \in L_1$

 $\cdot x$

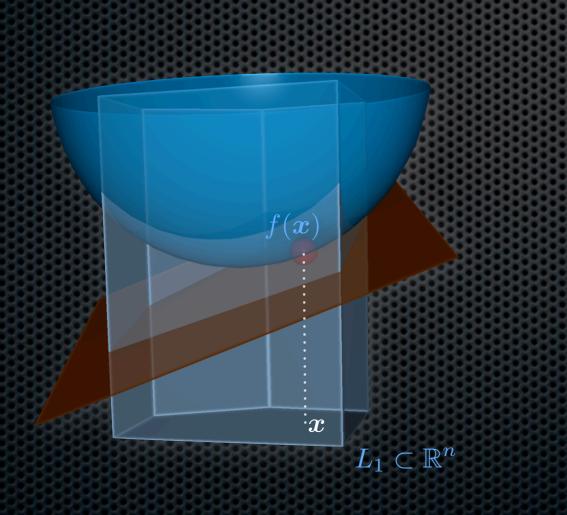
 $L_1 \subset \mathbb{R}^n$

Signal processing

sparse recovery methods

Convex optimization methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$

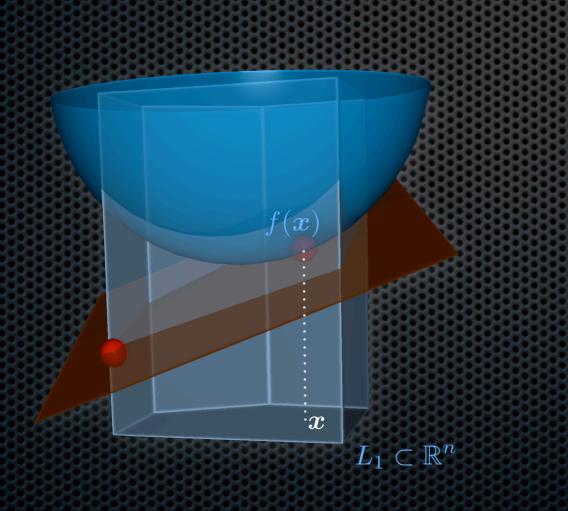


Signal processing

sparse recovery methods

Convex optimization methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$



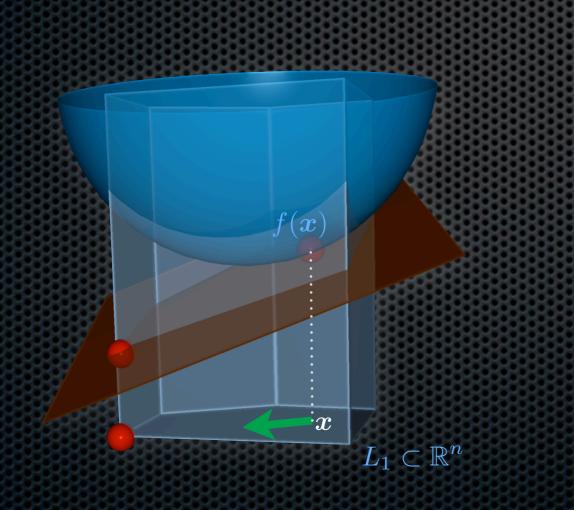
Signal processing

sparse recovery methods

Convex optimization

methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$



Signal processing

sparse recovery methods

Convex optimization methods applied to

 $\min_{x \in L_1} \|Ax - b\|^2$

Signal processing

sparse recovery methods

