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Outline

• An Equivalence between 
the Lasso and Support Vector Machines

• Reduction from Lasso to SVM

• Reduction from SVM to Lasso

• Applications

• Greedy Algorithms
(from optimization and signal processing)
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Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:
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SVM Rd

mirror blue points at the origin



SVM Rd



Polytope distance Rdpoints inn

A 2 Rd⇥n

min
w2conv(A)

kwk2

min
x2�

kAxk2

w
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SVM variants
whose dual problem is of the form min

x2�
kAxk2

A 2 Rd⇥n

Hard margin
Soft margin 

(L2-loss)
Soft margin 

(L1-loss)

Two class
no offset/bias

Two class
regularized offset/bias

One Class

✓ ✓ ✗

✓ ✓ ✗

✓ ✓ ✗

min
w̄2Rd

, ⇢2R,
⇠2Rn

1
2 kw̄k22 � ⇢+ C

2

P

i

⇠2
i

s.t. y
i

· w̄TX
i

� ⇢� ⇠
i

8i 2 [1..n]

(all with or without using kernels)
kAxk2 = x

T
A

T
Ax



Lasso
=     -regularized least squares regression

A 2 Rd⇥n

min
kxk1t

kAx� bk2

• Sparse regression

• Feature selection

`1

b 2 Rd



A 2 Rd⇥n

L1 := {x 2 Rn | kxk1  1}
= conv({±ei})

min
x2L1

kAx� bk2

• Sparse regression

• Feature selection

Lasso
=     -regularized least squares regression`1

b 2 Rd



Given a Lasso 
construct an equivalent SVM instance

min
x2L1

kAx� bk2

min
x

02�
kÃx0k2

A 2 Rd⇥n

2
L
1 ⇢

R n

x = In � In 2
�
⇢
R 2n

x

0

(barycentric
 coordinates)

(Lasso � SVM)

b 2 Rd

Ã := 2 Rd⇥2nA �A � b1T

SVM:

min
x

02�
kA( )x0 � bk2In � In



{�Ai}

Geometric interpretation:

b

min
x2L1

kAx� bk2

AL1 = A conv({±ei}) = conv({±Ai})= conv(A{±ei})
A conv(S)

= conv(AS)

(Lasso � SVM)

{Ai}



Given an SVM
construct an equivalent Lasso instance

min
x2�

kAxk2

min
x2L1

kÃx� b̃k2

A 2 Rd⇥n
(SVM � Lasso)

more challenging reduction!

Ã := A+ b̃1T 2 Rd⇥n

b̃ / �w

Lasso:

w weakly separating for A
w



w

(SVM � Lasso)

{Ãi}
w⇤

Geometric interpretation:

Ã := A+ b̃1T

w weakly separating for A

b̃ / �w

2 Rd⇥n



{�Ãi}

w

(SVM � Lasso)

{Ãi}
w⇤

b̃

Geometric interpretation:

Ã := A+ b̃1T

w weakly separating for A

b̃ / �w

2 Rd⇥n



(SVM � Lasso)

{�Ãi}

w{Ãi}
w⇤

b̃

Properties of the constructed 
Lasso instance

Ã := A+ b̃1T

w weakly separating for A

b̃ / �w

2 Rd⇥n

min
x2L1

kÃx� b̃k2

For any                for the Lasso, there is a vector
             , of the same or better Lasso objective.

This                 attains the same objective in the SVM.
x

0 2 �

x 2 L1

x

0 2 �

Theorem:



Implications:

Implications for Lasso

• Algorithms apply to both problems

min
x2L1

�����
X

i

 (A
i

)x
i

� (b)

�����

2

H

• Kernelized version

(y, z) = h (y), (z)i(Ai, Aj), (Ai, b), (b, b)defined in terms of

sublinear time algorithms Õ(n+ d)



Implications for SVMs

• Support vectors 
= non-zeros in the Lasso solution

• number of SVs
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Greedy Algorithms

Frank-Wolfe

min
x2L1

kAx� bk2
sparse recovery methodsmethods applied to

Convex optimization Signal processing

recover a sparse x from a
noisy measurement b of Ax
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f(x)

x

L1 ⇢ Rn
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Greedy Algorithms

f(x)

x

L1 ⇢ Rn

i := argmax

i
|rf(x)i|

±ei

min
x2L1

kAx� bk2
sparse recovery methodsmethods applied to

Convex optimization Signal processing

recover a sparse x from a
noisy measurement b of Ax



Greedy Algorithms

Frank-Wolfe matching pursuit
selects the same 
atom per step

i := argmax

i
|rf(x)i|

fully corrective
Frank-Wolfe

OMP
equivalent to

 

min
x2L1

kAx� bk2
sparse recovery methodsmethods applied to

Convex optimization Signal processing

recover a sparse x from a
noisy measurement b of Ax
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