Computational Intelligence Laboratory

Lecture 7: Optimization

Martin Jaggi

ETH Zurich – <cil.inf.ethz.ch>

April 17, 2015

Outline

[Optimization Algorithms](#page-1-0)

[Coordinate Descent](#page-5-0) [Gradient Descent](#page-10-0) [Stochastic Gradient Descent](#page-13-0)

[Constrained Optimization](#page-15-0)

[Projected Gradient Descent](#page-17-0)

[Turning Constrained into Unconstrained Problems](#page-18-0)

[Optimization Theory](#page-19-0)

[Duality](#page-19-0) [Convex Optimization](#page-30-0) [Convexity](#page-31-0) [Solving Convex Optimization Problems](#page-36-0) [SubGradient Descent](#page-38-0)

[Optimization for Matrix Factorizations](#page-39-0) [Examples](#page-40-0)

Optimization

General Optimization Problem

for convenience: $f : \mathbb{R}^D \to \mathbb{R}$ is continuous and differentiable

Institute for Machine Learning, ETHZ CIL: [Optimization Algorithms/](#page-1-0) 3/45

Why? And How?

optimization is everywhere

machine learning, big data, statistics, data analysis of all kinds, finance, logistics, planning, control theory, mathematics, search engines, simulations, and many other applications ...

- \blacktriangleright Mathematical Modeling *(defining the optimization problem)*
- \triangleright Solving It *(running an optimization algorithm)*

Optimization Algorithms

the main contenders:

- ► Coordinate Descent
- \blacktriangleright Gradient Descent
- \triangleright Stochastic Gradient Descent

History: Early roots: Cauchy 1847. Linear Programming in the 1950's. General Optimization in 1980's, together with new Convex Optimization theory. Now active research field again in the wake of big data.

Goal: Find $\mathbf{x}^* \in \mathbb{R}^D$ minimizing $f(\mathbf{x})$. (Example: *D* = 2)

Idea: Update one coordinate at a time, while keeping others fixed.

Goal: Find $\mathbf{x}^* \in \mathbb{R}^D$ minimizing $f(\mathbf{x})$.

Idea: Update one coordinate at a time, while keeping others fixed.

Institute for Machine Learning, ETHZ CIL: [Optimization Algorithms](#page-1-0)[/Coordinate Descent](#page-5-0) 7/45

Goal: Find $\mathbf{x}^* \in \mathbb{R}^D$ minimizing $f(\mathbf{x})$.

Idea: Update one coordinate at a time, while keeping others fixed.

Institute for Machine Learning, ETHZ CIL: [Optimization Algorithms](#page-1-0)[/Coordinate Descent](#page-5-0) 8/45

Idea: Update one coordinate at a time, while keeping others fixed.

Coordinate Descent

initialize $\mathbf{x}^{(0)} \in \mathbb{R}^D$

for $t = 0$: maxIter do

sample a coordinate *d* uniformly at random from 1 *...D*. optimize *f* w.r.t. that coordinate:

$$
u^* \leftarrow \underset{u \in \mathbb{R}}{\text{argmin}} \ f\left(x_1^{(t)}, \dots, x_{d-1}^{(t)}, u, x_{d+1}^{(t)}, \dots, x_D^{(t)}\right)
$$
\n
$$
\text{update } x_d^{(t+1)} \leftarrow u^*
$$
\n
$$
x_{d'}^{(t+1)} \leftarrow x_{d'}^{(t)} \text{ for } d' \neq d
$$
\n
$$
\text{end for}
$$

Navigating the Optimization Landscape

The Direction of Steepest Change:

Gradient of a function $f : \mathbb{R}^D \to \mathbb{R}$ is

$$
\nabla f(\mathbf{x}) := \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_D}\right)^{\mathsf{T}} \in \mathbb{R}^D
$$

Institute for Machine Learning, ETHZ CIL: [Optimization Algorithms](#page-1-0)[/Coordinate Descent](#page-5-0) 10/45

Gradient Descent Method

Institute for Machine Learning, ETHZ CIL: [Optimization Algorithms](#page-1-0)[/Gradient Descent](#page-10-0) 11/45

Gradient Descent Method

Institute for Machine Learning, ETHZ CIL: [Optimization Algorithms](#page-1-0)[/Gradient Descent](#page-10-0) 12/45

Gradient Descent Method

initialize
$$
\mathbf{x}^{(0)} \in \mathbb{R}^D
$$

\nfor $t = 0$:maxIter do
\nupdate $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \gamma \nabla f(\mathbf{x}^{(t)})$

\nend for

Cauchy 1847

- \blacktriangleright simple to implement
- \triangleright good scalability and robustness
- \blacktriangleright stepsize γ usually decreasing with $\gamma \approx \frac{1}{t}$

Stochastic Gradient Descent

Optimization Problem Structure

minimize
$$
f(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} f_n(\mathbf{x})
$$

with $\mathbf{x} \in \mathbb{R}^D$

Stochastic Gradient Descent (SGD)

initialize
$$
\mathbf{x}^{(0)} \in \mathbb{R}^D
$$

\nfor $t = 0$:maxIter do

\nsample *n* uniformly at random from $1 \dots N$.

\nupdate $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \gamma \nabla f_n(\mathbf{x}^{(t)})$

\nend for

Institute for Machine Learning, ETHZ CIL: [Optimization Algorithms](#page-1-0)[/Stochastic Gradient Descent](#page-13-0) 14/45

Stochastic Gradient Descent - Why Does It Work?

 SGD update $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \gamma \nabla f_n(\mathbf{x}^{(t)})$

 \triangleright Idea: Cheap but unbiased estimate of the gradient \blacktriangleright E[$\nabla f_n(\mathbf{x})$] = $\nabla f(\mathbf{x})$ over the random choice of *n*.

Computing $\nabla f_n(\mathbf{x})$ **is much cheaper than computing** $\nabla f(\mathbf{x})$ **.**

 \blacktriangleright Typically *N* times cheaper

 \blacktriangleright Again use a decreasing stepsize $\gamma \approx \frac{1}{t}$

Institute for Machine Learning, ETHZ CIL: [Optimization Algorithms](#page-1-0)[/Stochastic Gradient Descent](#page-13-0) 15/45

Constrained Optimization

Institute for Machine Learning, ETHZ CIL: [Constrained Optimization/](#page-15-0) 16/45

Constrained Optimization

Solving Constrained Optimization Problems

- A Projected Gradient Descent
- B Transform it into an *unconstrained* problem

Institute for Machine Learning, ETHZ CIL: [Constrained Optimization/](#page-15-0) 17/45

Projected Gradient Descent

Idea: add a projection onto *Q* after every step $P_Q(\mathbf{x}') := \operatorname{argmin}_{\mathbf{y} \in Q} \|\mathbf{y} - \mathbf{x}'\|$

Projected gradient update $\mathbf{x}^{(t+1)} \leftarrow P_Q[\mathbf{x}^{(t)} - \gamma \nabla f(\mathbf{x}^{(t)})]$

Institute for Machine Learning, ETHZ CIL: [Constrained Optimization/](#page-15-0)[Projected Gradient Descent](#page-17-0) 18/45

Turning Constrained into Unconstrained Problems

Use **penalty functions** instead of directly solving $\min_{\mathbf{x}\in Q} f(\mathbf{x})$.

► "brick wall" (indicator function)
$$
I_Q(\mathbf{x}) := \begin{cases} 0 & \mathbf{x} \in Q \\ \infty & \mathbf{x} \notin Q \end{cases}
$$

$$
\Rightarrow \min_{\mathbf{x} \in \mathbb{R}^D} f(\mathbf{x}) + I_Q(\mathbf{x})
$$

(disadvantage: non-continuous objective)

 \blacktriangleright Penalize error *Example:* $Q = \{ \mathbf{x} \in \mathbb{R}^D \mid A\mathbf{x} = \mathbf{b} \}$ \Rightarrow $\min_{\mathbf{x} \in \mathbb{R}^D} f(\mathbf{x}) + \lambda ||A\mathbf{x} - \mathbf{b}||^2$

▶ Linearized Penalty Functions (Lagrange Multipliers)

Institute for Machine Learning, ETHZ CIL: [Constrained Optimization/](#page-15-0)[Turning Constrained into Unconstrained Problems](#page-18-0) 19/45

Optimization Theory

Duality

Convex Optimization

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/Duality](#page-19-0) 20/45

Duality for Constrained Optimization

Constrained Problem Formulation (Standard Form)

minimize $f(\mathbf{x})$ subject to $q_i(\mathbf{x}) \leq 0, i = 1, \ldots, m$ $h_i(\mathbf{x})=0, i=1,\ldots,p$

- \blacktriangleright $f(\mathbf{x})$: objective function
- \bullet $q_i(\mathbf{x})$: inequality constraint functions
- \blacktriangleright $h_i(\mathbf{x})$: affine equality constraint functions, $h_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} b_i$

Lagrange Multipliers

Primal Optimization Problem

minimize $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0, i = 1, \ldots, m$ $h_i(\mathbf{x})=0, i=1,\ldots,p$

Unconstrained Problem

minimize
$$
f(\mathbf{x}) + \sum_{i=1}^{m} I_{-}(g_i(\mathbf{x})) + \sum_{i=1}^{p} I_0(h_i(\mathbf{x}))
$$

\n
$$
\triangleright I_{-}(u) := \begin{cases} 0 & u \le 0 \\ \infty & u > 0 \end{cases} \triangleright I_0(u) := \begin{cases} 0 & u = 0 \\ \infty & u \ne 0 \end{cases}
$$

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/Duality](#page-19-0) 22/45

Lagrange Multipliers

Unconstrained Problem

minimize
$$
f(\mathbf{x}) + \sum_{i=1}^{m} I_{-}(g_i(\mathbf{x})) + \sum_{i=1}^{p} I_0(h_i(\mathbf{x}))
$$

 I_0 and I penalize perturbations with violating constraints by "*brick wall*" penalty functions.

We can approximate *I* (*u*) linearly with $\lambda_i u, \lambda_i \geq 0$, and $I_0(u)$ with $\nu_i u$:

Lagrangian

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x})
$$

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/Duality](#page-19-0) 23/45

Lagrange Multipliers

Linear approximation: $I_{i}(u) \approx \lambda_{i} u, \lambda_{i} \geq 0$, and $I_{0}(u) \approx \nu_{i} u$. λ_i, ν_i are called Lagrange multipliers.

Lagrangian

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x})
$$

Lagrange dual function

$$
d(\lambda, \nu) := \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) \quad \in \mathbb{R}
$$

Since $\lambda_i u \leq I(u)$ and $\nu_i u \leq I_0(u)$ for all *u*:

 \triangleright The value of the dual function is always a lower bound on the primal value $f(\mathbf{x})$ of any feasible **x**.

Visual Example (Lower bound from a dual feasible point)

The solid curve shows the objective function *f*, and the dashed curve shows the constraint function *g*1. The feasible set is the interval [0*.*46*,* 0*,* 46], which is indicated by the two dotted vertical lines. The optimal point and value are $x^* =$ $-0.46, f(x^*) = 1.54$ (shown as the black dot). The dotted curves show $L(\mathbf{x}, \lambda)$ for $\lambda = 0.1, 0.2, \ldots, 1.0$. Each of these has minimum value smaller than $f(\mathbf{x}^*)$, since on the feasible set (and for λ > 0) we have $L(\mathbf{x}, \lambda) \leq f(\mathbf{x}).$

V isual Example (The dual function $d(\lambda)$ is concave) Visual Example (The dual function $d(\lambda)$ is concave)

The dual function $d(\lambda)$ for the problem. Neither *f* nor *g*1 is convex, but the dual function is concave. The horizontal dashed line shows $f(\mathbf{x}^*)$, the optimal value of the problem.

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/Duality](#page-19-0) 26/45

Dual Problem

Lagrangian

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x})
$$

Lagrange dual function

$$
d(\lambda, \nu) := \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)
$$

Now find the best lower bound on the optimum $f(\mathbf{x}^*)$: Lagrange dual problem

maximize
$$
d(\lambda, \nu)
$$

subject to $\lambda \ge 0$

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/Duality](#page-19-0) 27/45

Dual Problem

Lagrange dual problem

maximize $d(\lambda, \nu)$ subject to $\lambda > 0$

It is always a lower bound on the primal value $f(\mathbf{x})$ of any feasible x.

 \Rightarrow It is a lower bound on the (unknown) solution value $f(\mathbf{x}^*)$ of the primal problem!

Strong Duality

If the primal optimization problem is **convex** *(to be defined below)*, and under *some additional conditions*, the solution value of the dual problem is *equal* to the solution value $f(\mathbf{x}^*)$ of the primal problem.

So Everything is Fine and Well Optimized?

no!

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/Duality](#page-19-0) 29/45

Algorithms Can Get Stuck in Local Optima!

Example: Gradient Descent (and also the other algorithms we have seen)

*from mathworks.com

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/Duality](#page-19-0) 30/45

Convex Optimization

comes to help

or: if you can't solve it, re-define the problem

 $(\approx 25000$ citations)

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/](#page-19-0)[Convex Optimization](#page-30-0) 31/45

Convex Set

A set *Q* is convex if the line segment between any two points of *Q* lies in Q, i.e., if for any $x, y \in Q$ and any θ with $0 \le \theta \le 1$, we have $\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in Q.$

$$
\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in Q.
$$

*Figure 2.2 from S. Boyd, L. Vandenberghe

Left Convex. which is a shown the first post include the first include $\frac{1}{2}$ Middle Not convex, since line segment not in set. Right Not convex, since some, but not all boundary points are contained in the set.

Properties of Convex Sets

- \blacktriangleright Intersections of convex sets are convex
- **Projections onto convex sets are** *unique*. (and often efficient to compute)

$$
\text{recall } P_Q(\mathbf{x}') := \text{argmin}_{\mathbf{y} \in Q} \|\mathbf{y} - \mathbf{x}'\|
$$

Convex Function and 0 *<* ✓ *<* 1. We say *f* is *concave* if *f* is convex, and *strictly concave* if *f* is

Definition $Definition$

A function $f : \mathbb{R}^D \to \mathbb{R}$ is **convex** if $\text{dom } f$ is a convex set and if for all $x, y \in \text{dom } f$, and θ with $0 \le \theta \le 1$, we have i. In other words $\sum_{i=1}^{n}$ is domain. In order words $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ *x* $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$

lies above the graph of f . **Geometrically**: The line segment between $(\mathbf{x}, f(\mathbf{x}))$ and $(\mathbf{y}, f(\mathbf{y}))$

Convex Function

Epigraph: The *graph* of a function $f : \mathbb{R}^D \to \mathbb{R}$ is defined as

 $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in \text{dom } f\},\$

The **epigraph** of a function $f : \mathbb{R}^D \to \mathbb{R}$ is defined as

 $\{(x, t) | x \in \text{dom } f, f(x) \leq t\},\$

A function is convex *iff* its epigraph is a convex set.

*Figure 3.5 from S. Boyd, L. Vandenberghe

Institute for Machine Learning, ETHZ Institute for Machine Learning, ETHZ CIL: [Optimization Theory/](#page-19-0)[Convex Optimization](#page-30-0) 35/45

Convex Function

Examples of convex functions

- Inear functions: $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$
- Affine functions: $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b$
- **Exponential:** $f(\mathbf{x}) = e^{\alpha \mathbf{x}}$
- \blacktriangleright Norms. Every norm on \mathbb{R}^D is convex.

Convexity of a norm *f*(x)

By the triangle inequality $f(x + y) \le f(x) + f(y)$ and homogeneity of a norm $f(a\mathbf{x}) = |a|f(\mathbf{x})$, a scalar:

$$
f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le f(\theta \mathbf{x}) + f((1 - \theta)\mathbf{y}) = \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}).
$$

We used the triangle inequality for the inequality and homogeneity for the equality.

Convex Optimization

Convex Optimization Problems are of the form

min $f(\mathbf{x})$ s.t. $\mathbf{x} \in Q$

where both

- \blacktriangleright *f* is a convex function
- \blacktriangleright *Q* is a convex set (note: \mathbb{R}^D is convex)

Properties of Convex Optimization Problems

Every local minimum is a global minimum

Solving Convex Optimization Problems (provably)

For convex optimization problems, all algorithms

- ▶ Coordinate Descent
- \blacktriangleright Gradient Descent
- **Bury Stochastic Gradient Descent**
- ▶ Projected Gradient Descent (projections onto convex sets do work!)

do **converge** to the global optimum! $\left(\text{assuming } f \text{ differentiable} \right)$

Theorem: For convex problems, the **convergence rate** of the above four algorithms is proportional with $\frac{1}{t}$, i.e.

$$
f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{\star}) \le \frac{c}{t}
$$

(where x^* is some optimal solution to the problem.)

caveat: SGD rate can be $1/\sqrt{t}$ if f is not strongly convex

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/](#page-19-0)[Convex Optimization](#page-30-0) 38/45

SubGradient Descent

What if f is not differentiable? $\frac{1}{\sqrt{2}}$ is a subgradient of $\frac{1}{\sqrt{2}}$ if $\frac{1}{\sqrt{2}}$

Subgradient: $\mathbf{g} \in \mathbb{R}^D$ is a subgradient of f at \mathbf{x} if

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^{\mathsf{T}}(\mathbf{y} - \mathbf{x})
$$
 for all y

Subgradient Descent: In algorithms, replace the gradient with a subgradient.

Theorem: For convex problems, the **convergence rate** of [plain] or projected] subgradient descent is proportional with $\frac{1}{\sqrt{2}}$ $_{\overline{t}}$, i.e.

$$
f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{\star}) \le \frac{c}{\sqrt{t}}
$$

Institute for Machine Learning, ETHZ CIL: [Optimization Theory/](#page-19-0)[Convex Optimization](#page-30-0) 39/45

Optimization for Matrix Factorizations

General Formulation

$$
\min_{\mathbf{U},\mathbf{Z}} f(\mathbf{U},\mathbf{Z})
$$

s.t.
$$
\mathbf{U} \in Q_1 \subseteq \mathbb{R}^{D \times K}
$$

$$
\mathbf{Z} \in Q_2 \subseteq \mathbb{R}^{N \times K}
$$

and assume $f(\mathbf{U}, \mathbf{Z}) = h(\mathbf{U}\mathbf{Z}^T)$ for some function $h : \mathbb{R}^{D \times N} \to \mathbb{R}$ **Examples**

$$
\triangleright \ f(\mathbf{U}, \mathbf{Z}) = \frac{1}{2} \|\mathbf{X} - \mathbf{UZ}^T\|_F^2, \n\text{with } Q_1 = \mathbb{R}^{D \times K}, Q_2 = \mathbb{R}^{N \times K}.
$$

Has an explicit solution: Singular Value Decomposition (first *K* singular vector pairs)

Unfortunately, this case is a rare exception!

Institute for Machine Learning, ETHZ CIL: [Optimization for Matrix Factorizations/](#page-39-0) 40/45

Optimization for Matrix Factorizations: Examples

\blacktriangleright *K*-means

$$
f(\mathbf{U}, \tilde{\mathbf{Z}}) = \|\mathbf{X} - \mathbf{U}\tilde{\mathbf{Z}}^T\|_F^2 = \sum_{n=1}^N \sum_{k=1}^K \tilde{Z}_{nk} \|\mathbf{x}_n - \mathbf{u}_k\|_2^2
$$

with $Q_1 = \mathbb{R}^{D \times K}$,
 $Q_2 = \{\tilde{\mathbf{Z}} \in \mathbb{R}^{N \times K}_{\geq 0} \mid \sum_k \tilde{Z}_{nk} = 1, \ \tilde{\mathbf{z}}_k^T \tilde{\mathbf{z}}_{:h} = 0 \text{ for } k \neq h\}.$

 \triangleright Non-Negative Matrix Factorizations

$$
f(\mathbf{U}, \mathbf{Z}) = \dots
$$

with $Q_1 = \mathbb{R}^{D \times K}_{\geq 0}$,

$$
Q_2 = \mathbb{R}^{N \times K}_{\geq 0}.
$$

 \triangleright Collaborative Filtering / Matrix Completion $f(\mathbf{U},\mathbf{Z})=\frac{1}{|\Omega|}\sum_{\mathbf{U}\in\mathcal{M}}(d,n)\in\Omega}\frac{1}{2}$ $\frac{1}{2}\big[{\bf X}_{dn} - ({\bf U}{\bf Z}^T)_{dn}\big]^2$ with $Q_1 = \mathbb{R}^{D \times K}$,
 $Q_2 = \mathbb{R}^{N \times K}$ where Ω is the set of observed ratings

Matrix Factorizations are Typically Non-Convex

Even if we are given a **convex** objective function

$$
h(\mathbf{W}) \quad : \quad \mathbb{R}^{D \times N} \to \mathbb{R},
$$

the same objective function in its factorized form

$$
f(\mathbf{U}, \mathbf{Z}) := h(\mathbf{U}\mathbf{Z}^T) \quad : \quad \mathbb{R}^{(D+N)\times K} \to \mathbb{R}
$$

is typically **not convex** (in its complete argument (U, Z)).

Proof:

Identity function $h(w) := w$, and $D = N = 1$. The resulting objective $f(u, z) = uz$ is a saddle function over its two variables.

Alternating Minimization

min $U \in Q_1, Z \in Q_2$ $f(\mathbf{U},\mathbf{Z})$

Idea:

... remember coordinate descent ...

Hardt, M. (2013). [Understanding Alternating Minimization for Matrix Completion.](http://arxiv.org/abs/1312.0925)

Institute for Machine Learning, ETHZ CIL: [Optimization for Matrix Factorizations](#page-39-0)[/Examples](#page-40-0) 43/45

Alternating Minimization

 \triangleright Often, while the original optimization problem might be non-convex, the two subproblems in the algorithm (w.r.t. U and Z separately) can be convex.

- \blacktriangleright Many Algorithm Variants:
	- In each step, optimize only over smaller parts of U and Z respectively.
	- \triangleright [Stochastic] Gradient steps on the parts, instead of perfect optimization (Winner of the Netflix Prize Competition)

related story: [Simon Funk, 2006, Blog Post "Netflix Update: Try This at Home"](http://www.kdd.org/sites/default/files/issues/9-1-2007-06/simon-funk-explorations.pdf)

If you want to learn more about optimization:

S. Boyd, L. Vandenberghe: Convex Optimization. Cambridge Univ. Press, (2004). Mostly chapters 4 and 5. It's free: <http://www.stanford.edu/~boyd/cvxbook/>.

