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Table 1. Primal-dual convergence rates of general algorithms applied to (A), for some machine learning and signal processing problems
which are examples of our optimization problem formulations (A) and (B). Note that several can be mapped to either (A) or (B). � > 0
is a regularization parameter specified by the user. We will discuss the most prominent examples in more detail in Sections 5.2 and 6.
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>
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>
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also objectives with efficient Fenchel-type operator (Yurt-
sever et al., 2015). In contrast, our approach preserves all
solutions of the original L

1

-optimization — it leaves the it-
erate sequences of existing algorithms unchanged, which is
desirable in practice, and allows the reusability of existing
solvers. We do not assume proximal or Fenchel tractability.

Distributed algorithms. For L
1

-problems exceeding the
memory capacity of a single computer, a communication-
efficient distributed scheme leveraging this Lipschitzing
trick is presented in (Smith et al., 2015; Forte, 2015).

3. Setup and Primal-Dual Structure
In this paper, we consider optimization problems of the fol-
lowing primal-dual structure. As we will see, the relation-
ship between primal and dual objectives has many benefits,
including computation of the duality gap, which allows us
to have certificates for the approximation quality.

We consider the following pair of optimization problems,
which are dual2 to each other:

min

↵2Rn

h

D(↵) := f(A↵) + g(↵)

i

, (A)

min

w2Rd

h

P(w) := f

⇤
(w) + g

⇤
(�A

>
w)

i

. (B)

The two problems are associated to a given data matrix
A 2 Rd⇥n, and the functions f : Rd ! R and g : Rn ! R
are allowed to be arbitrary closed convex functions. Here
↵ 2 Rn and w 2 Rd are the respective variable vectors.
The relation of (A) and (B) is called Fenchel-Rockafellar
Duality where the functions f

⇤
, g

⇤ in formulation (B) are
defined as the convex conjugates3 of their corresponding
counterparts f, g in (A). The two main powerful features of
this general duality structure are first that it includes many
more machine learning methods than more traditional du-

2For a self-contained derivation see Appendix C.
3The conjugate is defined as h⇤(v) := supu2Rd v>u�h(u).

ality notions, and secondly that the two problems are fully
symmetric, when changing respective roles of f and g. In
typical machine learning problems, the two parts typically
play the roles of a data-fit (or loss) term as well as a regu-
larization term. As we will see later, those two roles can be
swapped, depending on the application.

Optimality Conditions. The first-order optimality condi-
tions for our pair of vectors w 2 Rd

,↵ 2 Rn in prob-
lems (A) and (B) are given as

w 2 @f(A↵) , (1a)
A↵ 2 @f

⇤
(w) , (1b)
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↵ 2 @g
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(�A
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w) (2b)

see, e.g. (Bauschke & Combettes, 2011, Proposition
19.18). The stated optimality conditions are equivalent
to ↵,w being a saddle-point of the Lagrangian, which is
given as L(↵,w) = f

⇤
(w) � hA↵,wi � g(↵) if ↵ 2

dom(g) and w 2 dom(f

⇤
).

Duality Gap. From the definition of the dual problems in
terms of the convex conjugates, we always have P(w) �
P(w

?

) � �D(↵?

) � �D(↵), giving rise to the definition
of the general duality gap G(w,↵) := P(w)� (�D(↵)).

For differentiable f , the duality gap can be used more con-
veniently: Given ↵ 2 Rn s.t. A↵ 2 dom(f) in the context
of (A), a corresponding variable vector w 2 Rd for prob-
lem (B) is given by the first-order optimality condition (1a)
as

w = w(↵) := rf(A↵) . (3)

Under strong duality, we have P(w

?

) = �D(↵?

) and
w(↵?

) = w

?, where ↵? is an optimal solution of (A).
This implies that the suboptimality P(w(↵)) � P(w

?

) is
always bounded above by the simpler duality gap function

G(↵):=P(w(↵))�(�D(↵))� P(w(↵))� P(w

?

) (4)

which hence acts as a certificate of the approximation qual-
ity of the variable vector ↵.
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4. Primal-Dual Guarantees for Any
Algorithm Solving (A)

In this section we state an important lemma, which will
later allow us to transform a suboptimality guarantee of
any algorithm into a duality gap guarantee, for optimiza-
tion problems of the form specified in the previous section.

Lemma 1. Consider an optimization problem of the
form (A). Let f be 1/�-smooth w.r.t. a norm k.k

f

and let g
be µ-strongly convex with convexity parameter µ � 0 w.r.t.
a norm k.k

g

. The general convex case µ = 0 is explicitly
allowed, but only if g has bounded support.

Then, for any ↵ 2 dom(D) and any s 2 [0, 1], it holds that

D(↵)�D(↵?

) � sG(↵) (5)

+

s

2

2

�

µ(1�s)

s

ku�↵k2
g

� 1

�

kA(u�↵)k2
f

�

,

where G(↵) is the gap function defined in (4) and

u 2 @g

⇤
(�A

>
w(↵)). (6)

We note that the improvement bound here bears similarity
to the proof of (Bach, 2015, Prop 4.2) for the case of an ex-
tended Frank-Wolfe algorithm. In contrast, our result here
is algorithm-independent, and leads to tighter results due to
the more careful choice of u, as we’ll see in the following.

4.1. Linear Convergence Rates

In this section we assume that we are using an arbitrary
optimization algorithm applied to problem (A). It is as-
sumed that the algorithm produces a sequence of (possi-
bly random) iterates {↵(t)}1

t=0

such that there exists C 2
(0, 1], D � 0 such that

E[D(↵(t)

)�D(↵?

)]  (1� C)

t

D. (7)

In the next two theorems, we define � :=

�

max↵ 6=0

kA↵k
f

/k↵k
g

�

2, i.e., the squared spectral
norm of the matrix A in the Euclidean norm case.

4.1.1. CASE I. STRONGLY CONVEX g

Let us assume g is µ-strongly convex (µ > 0) (equivalently,
its conjugate g

⇤ has Lipschitz continuous gradient with a
constant 1/µ). The following theorem provides a linear
convergence guarantee for any algorithm with given linear
convergence rate for the suboptimality D(↵)�D(↵?

).

Theorem 2. Assume the function f is 1/�-smooth w.r.t. a
norm k.k

f

and g is µ-strongly convex w.r.t. a norm k.k
g

.
Suppose we are using a linearly convergent algorithm as
specified in (7). Then, for any

t � T :=

1

C

log

D(

�
�+µ)

µ✏

(8)

it holds that E[G(↵(t)

)]  ✏.

From (7) we can obtain that after 1

C

log

D

✏

iterations, we

would have a point ↵(t) such that E[D(↵(t)

)�D(↵?

)]  ✏.
Hence, comparing with (8) only few more iterations are
needed to get the guarantees for the duality gap. The
rate (7) is achieved by most of the first order algorithms,
including proximal gradient descent (Nesterov, 2013) or
SDCA (Richtárik & Takáč, 2014) with C ⇠ µ or accel-
erated SDCA (Lin et al., 2014) with C ⇠ p

µ.

4.1.2. CASE II. GENERAL CONVEX g (OF BOUNDED
SUPPORT)

In this section we will assume that g⇤ is Lipschitz (in con-
trast to smooth as in Theorem 2) and show that the linear
convergence rate is preserved.

Theorem 3. Assume that the function f is 1/�-smooth
w.r.t. a norm k.k, g⇤ is L-Lipschitz continuous w.r.t the
dual norm k.k⇤, and we are using a linearly convergent al-
gorithm (7). Then, for any

t � T :=

1

C

log

2Dmax{1,2�L2
/✏�}

✏

(9)

it holds that E[G(↵(t)

)]  ✏.

In (Wang & Lin, 2014), it was proven that feasible descent
methods when applied to the dual of an SVM do improve
the objective geometrically as in (7). Later, (Ma et al.,
2015b) extended this to stochastic coordinate feasible de-
scent algorithms (including SDCA). Using our new Theo-
rem 3, we can therefore extend their results to linear con-
vergence for the duality gap for the SVM application.

4.2. Sub-Linear Convergence Rates

In this case we will focus only on general L-Lipschitz con-
tinuous functions g

⇤ (if g is strongly convex, then many
existing algorithms are available and converge with a lin-
ear rate).
We will assume that we are applying some (possi-
bly randomized) algorithm on optimization problem (A)
which produces a sequence (of possibly random) iterates
{↵(t)}1

t=0

such that

E[D(↵(t)

)�D(↵?

)]  C

D(t)

, (10)

where D(t) is a function wich has usually a linear or
quadratic growth (i.e. D(t) ⇠ O(t) or D(t) ⇠ O(t

2

)).

The following theorem will allow to equip existing algo-
rithms with sub-linear convergence in suboptimality, as
specified in (10), with duality gap convergence guarantees.

Theorem 4. Assume the function f is 1/�-smooth w.r.t. the
norm k.k, g⇤ is L-Lipschitz continuous, w.r.t. the dual norm
k.k⇤, and we are using a sub-linearly convergent algorithm
as quantified by (10). Then, for any t � 0 such that

D(t) � max{ 2C�

�L

2 ,
2C�L

2

�✏

2 }, (11)

it holds that E[G(↵(t)

)]  ✏.
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6. Coordinate Descent Algorithms
We now focus on a very important class of algorithms, that
is coordinate descent methods. In this section, we show
how our theory implies much more general primal-dual
convergence guarantees for coordinate descent algorithms.

Partially Separable Problems. A widely used subclass of
optimization problems arises when one part of the objective
becomes separable. Formally, this is expressed as g(↵) =

P

n

i=1

g

i

(↵

i

) for univariate functions g

i

: R ! R for i 2
[n]. Nicely in this case, the conjugate of g also separates
as g

⇤
(y) =

P

i

g

⇤
i

(y

i

). Therefore, the two optimization
problems (A) and (B) write as

D(↵) := f(A↵) +

P

i

g

i

(↵

i

) (SA)

P(w) := f

⇤
(w) +

P

i

g

⇤
i

(�A >
:i

w) , (SB)

where A

:i

2 Rd denotes the i-th column of A.

The Algorithm. We consider the coordinate descent al-
gorithm described in Algorithm 1. Initialize ↵(0)

= 0 and
then, at each iteration, sample and update a random coordi-
nate i 2 [n] of the parameter vector ↵ to iteratively mini-
mize (SA). Finally, after T iterations output ¯↵, the average
vector over the latest T � T

0

iterates. The parameter T
0

is
some positive number smaller than T .

Algorithm 1 Coordinate Descent on D(↵)

1: Input: Data matrix A.
Starting point ↵(0)

:= 0 2 Rn, w(0)

= w(↵(0)

).
2: for t = 1, 2, . . . T do
3: Pick i 2 [n] randomly
4: Find �↵

i

minimizing D(↵(t�1)

+ e

i

�↵

i

)

5: ↵(t)  ↵(t�1)

+�↵

i

e

i

6: w

(t)  w(↵(t)

)

7: end for
8: Let ¯↵ =

1

T�T0

P

T�1

t=T0
↵(t)

As we will show in the following section, coordinate de-
scent on D(↵) is not only an efficient optimizer of the ob-
jective D(↵), but also provably reduces the duality gap.
Therefore, the same algorithm will simultaneously opti-
mize the dual objective P(w).

6.1. Primal-Dual Analysis for Coordinate Descent

We first show linear primal-dual convergence rate of Al-
gorithm 1 applied to (SA) for strongly convex g

i

. Later,
we will generalize this result to also apply to the setting
of general Lipschitz g

i

. This generalization together with
the Lipschitzing trick will allow us to derive primal-dual
convergence guarantees of coordinate descent for a much
broader class of problems, including the Lasso problem.

For the following theorems we assume that the columns of

the data matrix A are scaled such that kA
:i

k  R for all
i 2 [n] and kA

j:

k  P for all j 2 [d], for some norm k.k.
Theorem 8. Consider Algorithm 1 applied to (SA). As-
sume f is a 1/�-smooth function w.r.t. the norm k.k. Then,
if g

i

is µ-strongly convex for all i, it suffices to have a total
number of iterations of

T �
⇣

n+

nR

2

µ�

⌘

log

✓

h

n+

nR

2

µ�

i

✏

(0)
D
✏

◆

to get E[G(↵(T )

)]  ✏. Moreover, to obtain an expected
duality gap of E[G(

¯↵)]  ✏ it suffices to have T > T

0

with

T

0

�
⇣

n+

nR

2

µ�

⌘

log

✓

h

n+

nR

2

µ�

i

✏

(0)
D

(T�T0)✏

◆

where ✏

(0)

D

is the initial suboptimality in D(↵).

Theorem 8 allows us to upper bound the duality gap, and
hence the suboptimality, for every iterate ↵(T ), as well as
the average ¯↵ returned by Algorithm 1. In the following we
generalize this result to apply to L-Lipschitz functions g

i

.
Theorem 9. Consider Algorithm 1 applied to (SA). As-
sume f is a 1/�-smooth function w.r.t. the norm k.k. Then,
if g⇤

i

is L-Lipschitz for all i, it suffices to have a total num-
ber of iterations of

T � max

⇢

0, n log

✏

(0)
D �

2L

2
R

2
n

�

+ n+

20n

2
L

2
R

2

�✏

to get E[G(

¯↵)]  ✏. Moreover, when t � T

0

with

T

0

= max

⇢

0, n log

✏

(0)
D �

2L

2
R

2
n

�

+

16n

2
L

2
R

2

�✏

we have the suboptimality bound of E[D(↵(t)

)�D(↵?

)] 
✏/2, where ✏

(0)

D

is the initial suboptimality.
Remark 2. Theorem 9 shows that for Lipschitz g

⇤
i

, Algo-
rithm 1 has O(✏

�1

) convergence in the suboptimality and
O(✏

�1

) convergence in G(

¯↵). Comparing this result to
Theorem 4 which suggests O(✏

�2

) convergence in G(↵)

for O(✏

�1

) convergent algorithms, we see that averaging
the parameter vector crucially improves convergence in the
case of non-smooth f .
Remark 3. Note that our Algorithm 1 recovers the widely
used SDCA setting (Shalev-Shwartz & Zhang, 2013) as a
special case, when we choose f

⇤
:=

�

2

k.k2
2

in (SB). Fur-
thermore, their convergence results for SDCA are consis-
tent with our results and can be recovered as a special case
of our analysis. See Corollaries 16, 18, 19 in Appendix J.

6.2. Application to L

1

and Elastic Net Regularized
Problems

We now apply Algorithm 1 to the L
1

-regularized problems,
as well as Elastic Net regularized problems. We state im-
proved primal-dual convergence rates which are more tai-
lored to the coordinate-wise setting.
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