

with accuracy certificates

Convex conjugate:

$$h^*(\boldsymbol{v}) := \sup_{\boldsymbol{u} \in \mathbb{R}^d} \ \boldsymbol{v}^T \boldsymbol{u} - h(\boldsymbol{u})$$

Primal-Dual Rates and Certificates Celestine Dünner ^{a,b} · Simone Forte ^b · Martin Takáč ^c · Martin Jaggi ^b $g(\alpha)$ -----. ----algorithm-independent new primal-dual convergence rates for a larger problem class main results existing rates \Rightarrow primal-dual rates algorithm agnostic changes iterates g strongly convex proof details * linear rate \Rightarrow linear primal-dual rate f = L2, g separable: see SDCA

- g bounded support * linear rate \Rightarrow linear primal-dual rate *new:* SVM
 - * 1/T rate $\Rightarrow \sqrt{1/T}$ primal-dual rate

g general convex? 🌺 same! using trick, see next examples: L1, elastic-n, group lasso, TV, fused L1, structured

The

 \blacktriangleright makes g^* globally Lipschitz gives duality gap defined on entire region of interest B easy to choose for norm-reg. problems problem and algorithms unaffected!

can re-use all existing algorithms!

Lemma 1. Consider an optimization problem of the form (A). Let f be $1/\beta$ -smooth w.r.t. a norm $\|.\|_f$ and let g be μ -strongly convex with convexity parameter $\mu \geq 0$ w.r.t. a norm $\|.\|_q$. The general convex case $\mu = 0$ is explicitly allowed, but only if g has bounded support.

<i>n, for any</i> $\boldsymbol{\alpha} \in \operatorname{dom}(\mathcal{D})$ <i>and any</i> $s \in [0, 1]$ <i>, it holds that</i>			
$(\boldsymbol{\alpha}^{\star}) - \mathcal{D}(\boldsymbol{\alpha}^{\star}) \ge sG(\boldsymbol{\alpha})$	(5)		
$+ rac{s^2}{2} ig(rac{\mu(1-s)}{s} \ \mathbf{u} - oldsymbollpha \ _g^2 - oldsymbol a \ _g^2 - $	$-\frac{1}{\beta} \ A(\mathbf{u}-\boldsymbol{lpha})\ _f^2$		
re $G(\mathbf{\alpha})$ is the cap function defined in	n(A) and		

where $G(\alpha)$ is the gap function defined in (4) and

 $\mathbf{u} \in \partial g^*(-A^\top \mathbf{w}(\boldsymbol{\alpha})).$

arXiv 1512.04011

references

•		
•	[1]	Shalev-S
		ascent n
		14:567-5
	[2]	Necoara
		methods
		convex p
•		

(6)

Shwartz and Zhang. Stochastic dual coordinate methods for regularized loss minimization. JMLR -599, 2013 , I. (2015). Linear convergence of first order under weak nondegeneracy assumptions for programming. arXiv/1504.06298

 $\bigcirc \bigcirc \bigcirc \bigcirc$