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Abstract
We provide stronger and more general
primal-dual convergence results for Frank-
Wolfe-type algorithms (a.k.a. conditional
gradient) for constrained convex optimiza-
tion, enabled by a simple framework of du-
ality gap certificates. Our analysis also holds
if the linear subproblems are only solved ap-
proximately (as well as if the gradients are
inexact), and is proven to be worst-case opti-
mal in the sparsity of the obtained solutions.

On the application side, this allows us to
unify a large variety of existing sparse greedy
methods, in particular for optimization over
convex hulls of an atomic set, even if those
sets can only be approximated, including
sparse (or structured sparse) vectors or ma-
trices, low-rank matrices, permutation matri-
ces, or max-norm bounded matrices.
We present a new general framework for con-
vex optimization over matrix factorizations,
where every Frank-Wolfe iteration will con-
sist of a low-rank update, and discuss the
broad application areas of this approach.

1. Introduction

Our work here addresses general constrained convex
optimization problems of the form

min
x∈D

f(x) . (1)

We assume that the objective function f is convex and
continuously differentiable, and that the domain D is a
compact convex subset of any vector space1. For such
optimization problems, one of the simplest and earliest
known iterative optimizers is given by the Frank-Wolfe
method (1956), described in Algorithm 1, also known
as the conditional gradient method.

1Formally, we assume that the optimization domain D
is a compact and convex subset of a Hilbert space X , i.e.
a Banach space equipped with an inner product 〈., .〉.
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Algorithm 1 Frank-Wolfe (1956)

Let x(0) ∈ D
for k = 0 . . .K do

Compute s := arg min
s∈D

〈
s,∇f(x(k))

〉
Update x(k+1) := (1− γ)x(k) + γs, for γ := 2

k+2
end for

A step of this algorithm is illustrated in the inset fig-
ure: At a current position x, the algorithm considers
the linearization of the objective function, and moves

f(x)

D

f

x
s

g(x)

towards a minimizer of
this linear function (taken
over the same domain).

In terms of conver-
gence, it is known
that the iterates of
Algorithm 1 satisfy
f(x(k)) − f(x∗) ≤ O

(
1
k

)
,

for x∗ being an optimal
solution to (1) (Frank & Wolfe, 1956; Dunn & Harsh-
barger, 1978). In recent years, Frank-Wolfe-type
methods have re-gained interest in several areas, fu-
eled by the good scalability, and the crucial property
that Algorithm 1 maintains its iterates as a convex
combination of only few “atoms” s, enabling e.g.
sparse and low-rank solutions (since at most one new
extreme point of the domain D is added in each step)
see e.g. (Clarkson, 2010; Jaggi, 2011) for an overview.

Contributions. The contributions of this paper are
two-fold: On the theoretical side, we give a conver-
gence analysis for the general Frank-Wolfe algorithm
guaranteeing small duality gap, and provide efficient
certificates for the approximation quality (which are
useful even for other optimizers). This result is ob-
tained by extending the duality concept as well as the
analysis of (Clarkson, 2010) to general Fenchel duality,
and approximate linear subproblems. Furthermore,
the presented analysis unifies several existing conver-
gence results for different sparse greedy algorithm vari-
ants into one simplified proof. In contrast to existing
convex optimization methods, our convergence anal-
ysis (as well as the algorithm itself) are fully invari-
ant under any affine transformation/pre-conditioning
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of the input optimization problem (1).

On the practical side, we illustrate the broader ap-
plicability of Frank-Wolfe-type methods, when com-
pared to their main competitors being projected gra-
dient descent and proximal methods. Per iteration,
Frank-Wolfe uses significantly less expensive linear
subproblems compared to quadratic problems in the
later, which can make the difference between simple
and intractable for e.g. the dual of structural SVMs
(Lacoste-Julien et al., 2013), or an order of magnitude
iteration cost for the trace norm (leading eigenvector
vs. SVD) (Jaggi & Sulovský, 2010).

We point out that all convex optimization problems
over convex hulls of atomic sets (Chandrasekaran
et al., 2012), which appear as the natural convex re-
laxations of combinatorial (NP-hard) “sparsity” prob-
lems, are directly suitable for Frank-Wolfe-type meth-
ods (using one atom per iteration), even when the do-
main can only be approximated. For optimization over
vectors, prominent examples include optimizing over
arbitrary norm-constrained domains (such as `1), as
well as norms that induce structured sparsity of the
approximate solutions, such as submodular polyhedra.

For matrix optimization problems, our presented ap-
proach results in simplified algorithms for optimizing
over bounded matrix trace norm, arbitrary Schatten
norms, or also permutation matrices and rotation ma-
trices. Another particularly interesting application is
convex optimization over bounded matrix max-norm,
where no convergence guarantees were known previ-
ously. Finally, we present a new general framework for
convex optimization over matrix factorizations, where
every Frank-Wolfe iteration will consist of a low-rank
update, and discuss applications for a broad range of
such domains.

History and Related Work. The original Frank-
Wolfe algorithm (1956) was introduced and analyzed
for polyhedral domains D in Rn (given as an inter-
section of linear constraints, so that the subproblem
becomes an LP). The original paper did not yet use
the “fixed” step-size as in Algorithm 1, but instead re-
lied on line-search on a quadratic upper bound on f .
(Levitin & Polyak, 1966) coined the term conditional
gradient method for the same algorithm, which (De-
myanov & Rubinov, 1970) then generalized to arbi-
trary Banach spaces as in the setting here. Later
(Dunn & Harshbarger, 1978) could show primal con-
vergence with 1

k when only approximate linear min-
imizers of the subproblems are used, and (Patriks-
son, 1993) investigated several alternative variations of
(non-)linear subproblems. Another variant using non-
linear subproblems was proposed in (Zhang, 2003), in

each iteration performing a line-search on f towards
all “vertices” of the domain.

In the machine learning literature, algorithm variants
for penalized (instead of constrained) problems were
investigated by (Harchaoui et al., 2012; Zhang et al.,
2012). For online optimization of non-smooth func-
tions in the low-regret setting, a variant has recently
been proposed by (Hazan & Kale, 2012), using ran-
domized smoothing. (Tewari et al., 2011) and (Dudik
et al., 2012, Appendix D) have recently studied Frank-
Wolfe methods for atomic domains using similar ideas
as in (Jaggi, 2011), but obtaining weaker convergence
results. (Temlyakov, 2012) gives a recent comprehen-
sive analysis of such greedy methods from the convex
analysis perspective. To the best of our knowledge,
none of the existing approaches could provide duality
gap convergence guarantees, or affine invariance (ex-
cept (Clarkson, 2010) for the simplex case). A block-
coordinate generalisation of Frank-Wolfe has recently
been proposed in (Lacoste-Julien et al., 2013).

2. The Duality Gap and Certificates

For any constrained convex optimization problem of
the form (1), and a feasible point x ∈ D, we define the
following simple surrogate duality gap

g(x) := max
s∈D

〈
x− s,∇f(x)

〉
. (2)

Convexity of f implies that the linearization f(x) +〈
s−x,∇f(x)

〉
always lies below the graph of the func-

tion f , as again illustrated in Figure 1. This immedi-
ately gives the crucial property of the duality gap (2),
as being a certificate for the current approximation
quality, i.e. g(x) ≥ f(x)− f(x∗).

While the value of an optimal solution f(x∗) is un-
known in most problems of interest, the quantity g(x)
for any candidate x is often easy to compute. For ex-
ample, the duality gap is “automatically” computed as
a by-product of every iteration of the Frank-Wolfe Al-
gorithm 1: Whenever s is a minimizer of the linearized
problem at an arbitrary point x, then this s is a certifi-
cate for the current duality gap g(x) =

〈
x−s,∇f(x)

〉
.

Such certificates for the approximation quality are use-
ful not only for the algorithms considered here, but in
fact for any optimizer of a constrained problem of the
form (1), e.g. as a stopping criterion, or to verify the
numerical stability of an optimizer. This duality con-
cept also extends to the more general case if f is convex
but non-smooth. In this case, the gap is certified by a
subgradient of f , see e.g. (Jaggi, 2011, Section 2.2).

Our defined duality gap (2) can also be interpreted
as a special (and simplified) case of Fenchel duality.
Using the Fenchel-Young (in)equality, the gap (2) can
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Algorithm 2 Frank-Wolfe with Approximate Linear
Subproblems, for Quality δ ≥ 0

Let x(0) ∈ D
for k = 0 . . .K do

Let γ := 2
k+2

Find s ∈ D s.t.〈
s,∇f(x(k))

〉
≤ min

ŝ∈D

〈
ŝ,∇f(x(k))

〉
+ 1

2δγCf

a) (Optionally: Perform line-search for γ)

b) Update x(k+1) := (1− γ)x(k) + γs
end for

Algorithm 3 Line-Search for the Step-Size γ

... as Algorithm 2, except replacing line a) with

a’) γ := arg min
γ∈[0,1]

f
(
x(k) + γ

(
s− x(k)

))
Algorithm 4 Fully-Corrective Variant, Re-Opt-
imizing over all Previous Directions (with s(0) := x(0))

... as Algorithm 2, except replacing line b) with

b’) Update x(k+1) := arg min
x∈conv(s(0),...,s(k+1))

f(x)

be shown to be equal to the difference of f(x) to the
Fenchel conjugate function of f , if the corresponding
dual variable is chosen to be the current (sub)gradient,
see (Lacoste-Julien et al., 2013, Appendix D).

3. Frank-Wolfe Algorithms

Besides classical Frank-Wolfe (Algorithm 1), the fol-
lowing three algorithm variants are relevant. Later we
will prove primal-dual convergence for all four algo-
rithm variants together.

Approximating the Linear Subproblems. De-
pending on the domain D, solving the linear subprob-
lem mins∈D

〈
s,∇f(x(k))

〉
exactly can be too expen-

sive. Algorithm 2 uses any approximate minimizer s
instead, of an additive approximation quality at least
ε′ := 1

2δγCf =
δCf
k+2 in step k. Here δ ≥ 0 is an arbi-

trary fixed accuracy parameter.

Line-Search for the Step-Size. Instead of using
the pre-defined step-sizes γ = 2

k+2 , Algorithm 3 picks
the best point on the line segment between the current
iterate x(k) and s.

“Fully Corrective” Variant. Algorithm 4 de-
picts the harder-working variant of the Frank-Wolfe
method, which after the addition of a new atom (or
search direction) s re-optimizes the objective f over
all previously used atoms. Here in step k, the current
atom s = s(k+1) is still allowed to be an approximate
linear minimizer.
Comparing to the original Frank-Wolfe method, the
idea is that the variant here will hopefully make more

progress per iteration, and therefore result in iterates x
being combinations of even fewer atoms (i.e. better
sparsity). This however comes at a price, namely that
the internal problem in each iteration can now become
as hard to solve as the original optimization problem,
implying that no global run-time guarantees can be
given for Algorithm 4 in general.
In computational geometry, the fully corrective
method has been used to prove existence results for
coresets, e.g. for the smallest enclosing ball problem.
Here it is known that compared to the cheaper Al-
gorithm 1, it gives coresets of roughly half the size
(Clarkson, 2010). Algorithm 4 is very close to orthog-
onal matching pursuit (Tropp & Gilbert, 2007), which
is among the most popular algorithms in signal pro-
cessing (the difference being that the later applies to
an unconstrained domain, more similar to the Frank-
Wolfe variant of (Zhang et al., 2012; Harchaoui et al.,
2012)). Algorithm 4 for the case of quadratic objec-
tives has also been known as the minimum-norm-point
algorithm (Bach, 2011). Recently, Yuan & Yan (2012)
suggested the use of Newton-type heuristics to solve
the subproblems in Algorithm 4.

Away-Steps. Another important variant is the use
of away-steps, as explained in (GuéLat & Marcotte,
1986), which we can unfortunately not discuss in de-
tail here due to the lack of space. The idea is that in
each iteration, we not only add a new atom s, but po-
tentially also remove an old atom (provided it is bad
with respect to our objective). This requires that the
iterate x is represented as a convex combination of the
current atoms. Similarily as for the fully corrective Al-
gorithm 4 above, this variant can improve the sparsity
of the iterates (Clarkson, 2010). Using away-steps, a
faster linear convergence can be obtained for some spe-
cial problem class (GuéLat & Marcotte, 1986).

The Curvature. The convergence analysis of
Frank-Wolfe type algorithms crucially relies on a mea-
sure of “non-linearity” of our objective function f over
the domain D. The curvature constant Cf of a convex
and differentiable function f : Rn → R, with respect
to a compact domain D is defined as

Cf := sup
x,s∈D,
γ∈[0,1],

y=x+γ(s−x)

2
γ2

(
f(y)−f(x)−〈y−x,∇f(x)〉

)
. (3)

For linear functions f for example, it holds that Cf =
0. A motivation to consider this quantity follows if we
imagine moving from a current point x towards a next
“iterate” y := x + γ(s − x), for any relative “step-
size” γ ∈ [0, 1]. Bounded Cf then means that the
deviation of f at y from the linearization of f given by
∇f(x) at x is bounded, where the acceptable deviation
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is weighted by the inverse of the squared step-size γ.
The defining term f(y)−f(x)−〈y−x,∇f(x)〉 is also
widely known as the Bregman divergence defined by f .
For f(x) := 1

2 ‖x‖
2
2 on Rn, the curvature Cf becomes

the squared Euclidean diameter of the domain D.

The assumption of bounded curvature Cf closely corre-
sponds to a Lipschitz assumption on the gradient of f
(sometimes called Cf -strong smoothness). More pre-
cisely, if∇f is L-Lipschitz continuous onD w.r.t. some
arbitrary chosen norm ‖.‖, then Cf ≤ diam‖.‖(D)2L,
where diam‖.‖(.) denotes the ‖.‖-diameter, cf. Ap-
pendix D. Note that the curvature constant Cf itself
does not depend on the choice of a norm.

Convergence in Primal Error. The following the-
orem shows that after O

(
1
ε

)
many iterations, the it-

erate x(k) of any of the Frank-Wolfe algorithm vari-
ants 1, 2, 3, and 4 is an ε-approximate solution to
problem (1), i.e. it satisfies f(x(k)) ≤ f(x∗)+ε, for x∗

being an optimal solution.
Compared to the existing literature (Dunn & Harsh-
barger, 1978; Jones, 1992; Patriksson, 1993; Zhang,
2003; Clarkson, 2010), our following proof more clearly
highlights the dependence on the approximation qual-
ity δ of the linear subproblems, holds for all algorithm
variants, and will prepare us for the main result of con-
vergence in the duality gap in the next Section. Later
we will also show that the resulting convergence rate is
indeed best possible for any algorithm that adds only
one new atom per iteration.

Theorem 1 (Primal Convergence). For each k ≥ 1,
the iterates x(k) of Algorithms 1, 2, 3, and 4 satisfy

f(x(k))− f(x∗) ≤ 2Cf
k + 2

(1 + δ) ,

where x∗ ∈ D is an optimal solution to problem (1),
and δ ≥ 0 is the accuracy to which the internal linear
subproblems are solved (i.e. δ = 0 for Algorithm 1).

The proof of the above convergence theorem relies on
expressing the improvement per step in terms of the
current duality gap, and then follows along the same
idea as in (Clarkson, 2010, Theorem 2.3). A proof is
given in Appendix A for completeness.

Inexact Gradient Information. Instead of ap-
proximately solving the linear subproblem given by
the exact gradient, the same convergence guarantees
can be obtained if an inexact gradient is used: For the
convergence to hold, we need that the algorithm picks
a point s that satisfies 〈s, dx〉 ≤ min

y∈D
〈y, dx〉+ ε′.

Consider the case whenD is a norm-ball for a norm ‖.‖,
and we only have an estimate d̂x of the gradient with

small ε′ ≥
∥∥∥d̂x − dx∥∥∥∗ ≥ ∥∥∥d̂x∥∥∥∗−‖dx‖∗ = max

y∈D
〈y, d̂x〉−

max
y∈D
〈y, dx〉. This shows that any such minimizer s :=

arg min
s∈D

〈s, d̂x〉 is sufficient for the same convergence.

Obtaining a Guaranteed Small Duality Gap.
From the above convergence Theorem 1, we have ob-
tained small primal error. However, since the optimum
value f(x∗) as well as the curvature constant Cf are of-
ten unknown in practical applications, certificates for
the current approximation quality are greatly desired.
The duality gap g(x) that we defined in Section 2 is
such an easy computable quality measure, and always
upper bounds the primal error f(x)− f(x∗).

Here we state our main result that all variants of the
Frank-Wolfe algorithm indeed obtain guaranteed small
duality gap g(x(k)) ≤ ε after O

(
1
ε

)
iterations, over ar-

bitrary bounded domain D ⊆ X , and even if the linear
subproblems are only solved approximately. This gen-
eralizes the result of (Clarkson, 2010), which already
proved the convergence of Algorithms 1 and 3 on the
unit simplex domain (using exact subproblems).

Theorem 2 (Primal-Dual Convergence). If Algo-
rithm 1, 2, 3 or 4 is run for K ≥ 2 iterations, then the

algorithm has an iterate x(k̂), 1 ≤ k̂ ≤ K, with duality
gap bounded by

g(x(k̂)) ≤ 2βCf
K + 2

(1 + δ) ,

where β = 27
8 = 3.375, and δ ≥ 0 is the accuracy to

which the linear subproblems are solved.

The proof is provided in Appendix B. The idea is
to show that the duality gap cannot stay large over
many iterations, since the step improvements would
then lead to convergence below the optimal value.

Invariance under Affine Transformations. In-
terestingly, the Frank-Wolfe algorithm as well as our
presented convergence analysis is fully invariant un-
der affine transformations and re-parameterizations of
the domain: If we chose any re-parameterization of
the domain D, by a surjective linear or affine map
M : D̂ → D, then the “old” and “new” optimiza-
tion problem variants minx∈D f(x) and minx̂∈D̂ f̂(x̂)

for f̂(x̂) := f(M x̂) look completely the same to the
Frank-Wolfe algorithm: More precisely, every iteration
will remain exactly the same, and also the convergence
with Cf/k is unchanged, since the curvature constant
Cf by its definition (3) is also invariant under such

transformations (using that ∇f̂ = MT∇f).

A natural variant of such a re-parameterization is the
use of bary-centric coordinates, if D is a convex hull of
finitely many vectors (then M contains these vectors
as columns, and D̂ is the unit simplex). This particu-
larly highlights the importance of the case of simplex
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domains, as studied by the seminal paper of (Clark-
son, 2010). However, convex hulls of infinitely many
vectors can not be represented this way.
The observed invariance under any “distortion” of the
domain is surprising in the light of the popularity of
pre-conditioners and second-order methods, and the
fact that the convergence of the majority of existing
convex optimizers crucially depends on the distortion
of the domain. Here in contrast, for Frank-Wolfe-type
methods, no distortion has any effect.

Optimality in Terms of Sparsity of the Ob-
tained Solutions. We will now show that the num-
ber of used atoms (i.e. the sparsity of x) of O

(
1
ε

)
as

used by the Frank-Wolfe algorithm is indeed worst-
case optimal (for a primal and/or dual approximation
error ε), by providing a lower bound of Ω

(
1
ε

)
. To-

gether with the upper bound, this therefore character-
izes the trade-off between sparsity and approximation
quality for the family of optimization problems of the
form (1). For the lower bound, the domain is chosen as
the unit simplex, D := ∆n ⊆ Rn. The same matching
sparsity upper and lower bounds will also hold for op-
timizing over the `1-ball instead, and also for the rank
in trace-norm constrained optimization (Jaggi, 2011).

Consider the function f(x) := ‖x‖22 = xTx. Its curva-
ture over the simplex is Cf = 2 diam(∆n)2 = 4, which
follows directly from the definition (3).

Lemma 3 (see Appendix C). For f(x) := ‖x‖22, and
1 ≤ k ≤ n, it holds that min x∈∆n

card(x)≤k
f(x) = 1

k .

In other words, for any vector x of sparsity card(x) =
k, the primal error f(x) − f(x∗) is always lower
bounded by 1

k − 1
n . Without considering sparsity,

(Canon & Cullum, 1968) have proved a slightly more
complicated asymptotic lower bound of Ω

(
1

k1+µ

)
on

the primal error of the Frank-Wolfe algorithm when
run on quadratic objectives, for all µ > 0. Our lower
bound here also extends to prove that the obtained
duality gap g(x) is best possible:

Lemma 4. For f(x) := ‖x‖22, and any k ∈ N, k < n,
it holds that g(x) ≥ 2

k ∀x ∈ ∆n s.t. card(x) ≤ k .

4. Optimizing over Atomic Sets

For any compact and convex subset D of a vector
space X , the function ΩD : X → R+ ∪ {+∞} defined
as

ΩD(x) := inf
t≥0
{t |x ∈ tD}

is called the gauge function (Rockafellar, 1997) of the
convex set D. The support function of D is given by

Ω∗D(y) := sup
s∈D
〈s,y〉 .

If the original gauge function ΩD(.) = ‖.‖ is a norm,
then Ω∗D(.) = ‖.‖∗ is precisely its dual norm.

Atomic Norms. In the special case when the set
D := conv(A) is a convex hull of another set A,
then ΩD(.) becomes the so called atomic norm (Chan-
drasekaran et al., 2012) defined by A. Despite its
name, the atomic norm is not always a norm. In gen-
eral, the function ΩD(.) is known to be a semi-norm if
and only if D is centrally symmetric, and it becomes
a norm if 0 ∈ int(D) (Rockafellar, 1997).

The support function of an atomic domain is obtained
by taking the largest inner product with an atomic
element, Ω∗D(x) = sups∈A〈s,x〉, which is often eas-
ier to compute than a maximum over the full domain
conv(A). This follows directly from the definition of
the convex hull, implying that any linear function at-
tains its maximum over a convex hull at a vertex, or
formally Ω∗A(.) = Ω∗conv(A)(.). This key property en-
ables the efficient application of the Frank-Wolfe algo-
rithm for atomic domains in the following.

Frank-Wolfe Algorithms for Optimizing over
Atomic Domains. In Table 1, we summarize a va-
riety of atomic domains D, over which convex opti-
mization problems of the form (1) can be solved effi-
ciently by the presented Frank-Wolfe methods, using
O
(

1
ε

)
iterations. Depending on the structure of the

atoms, this means that the Frank-Wolfe iterates x will
often inherit some of this structure, such as sparsity
or low rank. In the next subsections we explain these
domains more precisely and comment on the compu-
tational complexity of the respective linear subprob-
lems. Note that the use of unit ball (or gauge) domains
comes with no loss of generality, since the argument
of f can be re-scaled by an arbitrary constant.

4.1. Optimizing over Vectors

Sparse Vectors / `1-Ball / Simplex. The convex
hull of the signed unit basis vectors A = {±ei | i ∈ [n]}
in Rn is the unit ball of the `1-norm. On the other
hand, the unit simplex is the convex hull of the unit
basis vectors. The use of Frank-Wolfe-type greedy al-
gorithms for finding sparse vectors which optimize a
convex function over such domains is well-studied in
the literature, see e.g. (Clarkson, 2010) and the refer-
ences therein. This motivated by the many prominent
applications such as for example Lasso regression (Tib-
shirani, 1996), sparse recovery (Mallat & Zhang, 1993),
and many learning tasks, where e.g. boosting (Ad-
aboost), support vector machines (Gärtner & Jaggi,
2009; Clarkson, 2010; Ouyang & Gray, 2010), and den-
sity estimation (Li & Barron, 2000; Bach et al., 2012)
turn out to be such problem instances. Clearly, every
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X Optimization Domain Complexity of one Frank-Wolfe Iteration
Atoms A D = conv(A) Ω∗D(y) = sups∈D〈s,y〉 Complexity

Rn Sparse vectors ‖.‖1-ball ‖y‖∞ O(n)
Rn Sign-vectors ‖.‖∞-ball ‖y‖1 O(n)
Rn `p-Sphere ‖.‖p-ball ‖y‖q O(n)

Rn Sparse non-neg. vectors Simplex ∆n maxi{yi} O(n)

Rn Latent group sparse vectors ‖.‖G-ball maxg∈G
∥∥y(g)

∥∥∗
g

∑
g∈G |g|

Rm×n Matrix trace norm ‖.‖tr-ball ‖y‖op = σ1(y) Õ
(
Nf/
√
ε′
)

(Lanczos)

Rm×n Matrix operator norm ‖.‖op-ball ‖y‖tr = ‖(σi(y))‖1 SVD

Rm×n Schatten matrix norms ‖(σi(.))‖p-ball ‖(σi(y))‖q SVD

Rm×n Matrix max-norm ‖.‖max-ball Õ
(
Nf (n+m)1.5/ε′2.5

)
Rn×n Permutation matrices Birkhoff polytope O(n3)
Rn×n Rotation matrices SVD (Procrustes prob.)

Sn×n Rank-1 PSD matrices
of unit trace {x � 0, Tr(x) = 1} λmax(y) Õ

(
Nf/
√
ε′
)

(Lanczos)

Sn×n PSD matrices
of bounded diagonal {x � 0, xii ≤ 1} Õ

(
Nf n

1.5/ε′2.5
)

Table 1. Some examples of atomic domains suitable for optimization using the Frank-Wolfe algorithm. Here SVD refers
to the complexity of computing a singular value decomposition, which is O(min{mn2,m2n}). Nf is the number of non-zero

entries in the gradient of the objective function f , and ε′ =
δCf
k+2

is the required accuracy for the linear subproblems. For

any p ∈ [1,∞], the conjugate value q is meant to satisfy 1
p

+ 1
q

= 1, allowing q =∞ for p = 1 and vice versa.

iteration will add at most one new non-zero coordinate
to x, and the linear subproblems consist of finding the
largest entry of the gradient.
The resulting trade-off between the sparsity and the
approximation quality is interesting. Our above spar-
sity lower bounds from Lemmata 3 and 4 together with
the upper bounds of O

(
1
ε

)
from the convergence analy-

sis show that the sparsity of the Frank-Wolfe iterates is
indeed best possible in terms of both primal and dual
approximation quality. For optimizing over the sim-
plex, this trade-off was also described by (Gärtner &
Jaggi, 2009; Clarkson, 2010), and by (Shalev-Shwartz
et al., 2010) for the `1-ball (considering primal error).

The `p-Ball. An exact Frank-Wolfe iteration only
costs linear time when optimizing over any `p-ball do-
main D, for p ∈ [1,∞]. This follows by the dual-
ity of the `p and `q-norms, as in Hölder’s inequality
〈s,y〉 ≤ ‖s‖p · ‖y‖q (for p, q ∈ [1,∞], 1

p + 1
q = 1, al-

lowing q = ∞ for p = 1 and vice versa). An optimal
solution s to the linear problem maxŝ, ‖ŝ‖p≤1 ŝ

Ty can

simply be obtained from y by choosing |si| ∝ |yi|q−1
,

keeping the same signs. This also holds for the case
p =∞, q = 1, where the domain D becomes the cube.

Structured Atomic Norms. In recent years,
structured norms have gained strong interest in sev-
eral areas of machine learning, computer vision, and
signal processing, due to their ability to induce more
general and structured notions of sparsity, see e.g. (Je-
natton et al., 2011) for an overview.
Here we will focus on one large class of structured
norms, proposed by (Obozinski et al., 2011), which
due to the atomic structure is particularly suitable to
be used with the Frank-Wolfe algorithm. Let G be a
finite collection of groups of indices g ⊆ [n] (which

are allowed to overlap), and
⋃
g∈G g = [n]. For each

group g, we choose an arbitrary norm ‖.‖g, which acts

only on the coordinates belonging to g, i.e. on R|g|.
For any v ∈ Rn and g ⊆ [n], we write v[g] ∈ Rn for the
vector coinciding with v in the coordinates in g, and
being zero elsewhere, i.e. supp(v[g]) ⊆ g. The same
vector when restricted to these coordinates is written
as v(g) ∈ R|g|. In this setting, a slight generalization of
the latent group norm (Obozinski et al., 2011) is given
by ‖x‖G := min

v(g)∈R|g|

∑
g∈G

∥∥v(g)

∥∥
g

s.t. x =
∑
g∈G v[g] .

It is known (Obozinski et al., 2011) that this norm
is an atomic norm (and a norm), with the atoms
A = {Dg | g ∈ G} being the unit disks defined by the

norms on the groups, Dg :=
{
v ∈ Rn

∣∣∣ supp(v)⊆g,
‖v(g)‖g≤1

}
. As

we discussed above when introducing atomic norms,
this implies that the dual norm is now given by ‖y‖∗G =

maxg∈G
∥∥y(g)

∥∥∗
g

. Furthermore, we can intersect any

such atomic set of disks with the non-negative cone,
and therefore obtain a corresponding “non-negative”
atomic norm. In the special case that G forms a par-
tition of [n], and all group norms ‖.‖g are chosen as
the Euclidian norm, then ‖.‖G becomes the standard
group-lasso penalty (Yuan & Lin, 2006).

4.2. Optimizing over Matrices

Schatten Matrix Norms. If ‖.‖ is a vector norm
on Rr, r := min{m,n}, then the corresponding Schat-
ten matrix norm of a matrix M ∈ Rm×n is defined as
‖(σ1(M), . . . , σr(M))‖, where σ1(M), . . . , σr(M) are
the singular values of M . The dual of the Schatten
`p-norm is the Schatten `q-norm. The two most promi-
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nent examples are the trace norm ‖.‖tr (also called the
nuclear- or Schatten `1-norm, being the sum of the sin-
gular values), and the operator norm ‖.‖op (Schatten
`∞-norm, being the largest singular value).

To apply the Frank-Wolfe algorithm to minimize a
convex function over a norm ball of a Schatten-`p-
norm, we need to be able to solve the linear subprob-
lems of the form supS∈D 〈S,M〉. Here, the following
fact comes to help: Since Schatten norms are invari-
ant under orthogonal transformations (by invariance
of the spectrum of the matrix), we can find such mini-
mizers by employing the singular value decomposition
(SVD): If the SVD of the given matrix M ∈ Rm×n
is U diag(σ)V T = M (where σ = (σ1, . . . , σr) ∈ Rr
and U ∈ Rm×r, V ∈ Rn×r are orthonormal), then
S := U diag(s)V T is an optimizer of supS∈D 〈S,M〉, if
s is any vector attaining sTσ = ‖σ‖q with ‖s‖p ≤ 1.
While finding such a conjugate vector s only costs
linear time O(r), the main computational cost of a
Frank-Wolfe step on a Schatten norm domain remains
the computation of the SVD (of the current gradient
matrix M), which is in O(min{mn2,m2n}).
In the important case of optimizing over bounded
trace-norm (Schatten `1-norm), the subproblems can
be solved much more efficiently, by a single approx-
imate eigenvector computation instead of a complete
SVD. We discuss this case in more detail in Section 4.3.

Orthonormal Matrices, and the Operator Norm
Ball. The convex hull of all orthonormal matrices
U ∈ Rm×n, UTU = I, is the norm ball of the standard
matrix operator norm ‖.‖op on Rm×n, which is the
Schatten-`∞-norm. Here it becomes particularly easy
to obtain a linear optimizer over D (the operator norm
ball) using the SVD approach we have explained above
for general Schatten norms. If UΣV T = M is the
SVD of M , then S := UV T is a solution to the linear
problem sup‖S‖op≤1〈S,M〉. (So for p = ∞, diag(s) is

always the identity matrix).

Permutation Matrices. The convex hull of all n×
n permutation matrices is known as the Birkhoff poly-
tope, and coincides with the set of all doubly stochas-
tic matrices (Lovász & Plummer, 2009). Despite the
number of atoms being exponential (n!), a linear func-
tion can be optimized efficiently over this polytope,
by using the primal-dual Hungarian algorithm in time
O(n3) (Lovász & Plummer, 2009). Therefore, the ex-
act Frank-Wolfe algorithm can be applied efficiently
for such domains, see also (Tewari et al., 2011).

Rotation Matrices. We consider optimizing over
the convex hull of all rotation matrices, i.e. the or-
thogonal n × n matrices of determinant one. Linear
optimization over this set D is known as the orthogo-

nal Procrustes problem, and can be solved by one SVD.
We can therefore optimize arbitrary convex functions f
by the Frank-Wolfe algorithm, using combinations of
only few rotations matrices. An online-version of such
optimization tasks was studied in (Hazan et al., 2010).

4.3. Factorized Matrix Norms

In this section, we propose a new general framework
for optimization over factorizations of a matrix M ∈
Rm×n into two factors M = LRT , where L ∈ Rm×r,
R ∈ Rn×r for some r ∈ N. To do so, we consider
atomic domains which consist of the outer products of
two atomic sets, i.e.

A :=
{
LRT

∣∣∣ L∈Aleft ,
R∈Aright

}
,

where Aleft ⊆ Rm×r and Aright ⊆ Rn×r are arbitrary
compact subsets (not necessarily finite) of Rm×r and
Rn×r respectively, and r ∈ N is fixed.

By definition of this atomic set, any iteration of the
Frank-Wolfe algorithm when optimizing over D =
conv(A) will result in an update of the form s = LRT ,
that is a low-rank update (of rank ≤ r). In other
words, such domains allow us to maintain all Frank-
Wolfe iterates x as a low-rank matrix factorization (of
rank at most ≤ rk in step k).

Our definition can also be seen as a generalization of
the fact that any pair of norms on vectors u ∈ Rm and
v ∈ Rn does induce a matrix norm on Rm×n, by means
of the quadratic form uTMv, see e.g. (Bach et al.,
2008; Zhang et al., 2012) and (Boyd & Vandenberghe,
2004, Example 3.11). We recover this case when r = 1.
(The work of Zhang et al. (2012) appeared after our
paper was put online).

Trace Norm. The trace norm (Schatten `1-norm)
gives the most natural example of such a factorized
matrix norm. The unit ball of the trace norm is
known to be the convex hull of the rank-1 matri-
ces A :=

{
uvT

∣∣∣ u∈Rn, ‖u‖2=1
v∈Rm, ‖v‖2=1

}
. Here, compared to

the cubic complexity of solving the linear subprob-
lem for general Schatten norms (using SVD, as ex-
plained in Section 4.2), the Frank-Wolfe steps become
much more efficient. This is because the subprob-
lem amounts to approximating the top eigenvalue (or
singular value), which when using the standard Lanc-
zos’ algorithm takes Õ(Nf/

√
ε) arithmetic operations

(suppressing constants and logarithmic factors), see
e.g. Appendix E, when Nf is the number of non-
zeros of ∇f . Altogether, the Frank-Wolfe algorithm
therefore provides ε-accurate low-rank solutions (rank
O
(

1
ε

)
) in a total running time of Õ

(
Nf/ε

1.5
)
, which is

near-linear in the number of non-zeros Nf , see (Jaggi
& Sulovský, 2010). This contrasts the accelerated ver-
sions of the “singular value thresholding” algorithm
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r Aleft⊆ Rm×r Aright⊆ Rn×r Ωconv(A)(M) Ω∗A(M) FW step

1 ‖.‖2-sphere ‖.‖2-sphere Trace norm ‖M‖tr ‖M‖op Lanczos, see Table 1

1 ‖.‖1-sphere ‖.‖1-sphere Vector `1-norm ‖ ~M‖1 ‖ ~M‖∞ O(nm)
1 ‖.‖∞-sphere ‖.‖∞-sphere Cut-norm ‖.‖∞→1 NP-hard (Alon & Naor, 2006)

n+m ‖.‖2,∞ ‖.‖2,∞ Max-norm ‖M‖max SDP, see Table 1

1 ‖.‖2 ∩ Rm≥0 ‖.‖2 ∩ Rn≥0 “non-neg. trace norm” NP-hard (Murty & Kabadi, 1987)
1 Simplex ∆m Simplex ∆n “non-neg. matrix `1-norm” O(nm)

Table 2. Examples of some factorized matrix norms on Rm×n, each induced by two atomic norms (last two rows giving
non-negative factorizations). Here ‖M‖2,∞ is the length of the `2-longest row of the matrix M , and ~M denotes the entries
of M written in a single large vector.

of (Cai et al., 2010), which perform O(1/
√
ε) complete

SVD computations, in each iteration taking time cubic
in the matrix dimension.
For trace-norm optimization, the presentation here
avoids the detour over a semidefinite programming for-
mulation present in (Jaggi & Sulovský, 2010) when
applying the method of (Hazan, 2008). The same
algorithm applies to optimizing under constrained
weighted trace norm, by reduction to the trace-norm
as e.g. described in (Giesen et al., 2012). For op-
timizing over semidefinite matrices Sn×n of bounded
trace, the above discussion is analogous, with A :={
uuT

∣∣u ∈ Rn, ‖u‖2 = 1
}

.

General Factorized Matrix Norm Domains.
Even in the case when optimizing over the individ-
ual atomic domains (given by Aleft and Aright) is easy,
optimizing a linear function over such a product do-
main A can rapidly turn into an intractable combina-
torial problem, cf. Table 2. For example, maximiz-
ing

〈
uvT ,M

〉
over vectors ‖u‖∞ ≤ 1 and ‖v‖∞ ≤ 1

for a given matrix M amounts to computing the cut-
norm ‖M‖∞→1, which is NP-hard (Alon & Naor,
2006). Maximizing the same quadratic form over non-
negative vectors ‖u‖2 ≤ 1, u ≥ 0 and ‖v‖2 ≤ 1, v ≥ 0
was also proven NP-hard by (Murty & Kabadi, 1987).

Matrix Max-Norm, and Semidefinite Optimiza-
tion with Bounded Diagonal. Another efficiently
tractable case of a factorized matrix domain is given
by the matrix max-norm, which is known to be an
approximation of the cut-norm (Srebro & Shraibman,
2005). Optimizing a linear function over the PSD ma-
trices with all diagonal elements upper bounded by one
is a well-studied problem, e.g. appearing as the stan-
dard SDP relaxation of the Max-Cut problem (Goe-
mans & Williamson, 1995). The algorithm of (Arora
et al., 2005) delivers an additive ε′-approximation to
the linearized problem over such matrices in time

Õ
(
n1.5L2.5

ε′2.5 NM

)
where L > 0 is an upper bound on

the value of the linear problem, and NM is the number
of non-zeros in M (Jaggi, 2011, Section 3.5).
Using the alternative characterization of the max-
norm of a rectangular matrix M ∈ Rm×n in terms

of a semidefinite program of the above form (Srebro &
Shraibman, 2005; Jaggi, 2011), we can directly plug in
the algorithm of (Arora et al., 2005) into the Frank-
Wolfe method, in order to optimize any convex func-
tion over a max-norm constrained domain. This, to
our knowledge, gives the first algorithm with a con-
vergence guarantee for such problems. (Lee et al.,
2010) have studied a proximal optimizer on a non-
convex formulation of the max-norm, and very re-
cently, (Orabona et al., 2012) have introduced a first-
order smoothing technique for max-norm problems.

4.4. Optimizing over Submodular Polyhedra

For a finite ground set S, a real valued function
defined on all subsets of S, is called submodular,
if g(A ∩ B) + g(A ∪ B) ≤ g(A) + g(B) holds
∀A,B ⊆ S. For any given submodular function g with
g(∅) = 0, the corresponding submodular polyhedron
(or polymatroid) is defined as the convex set Pg :={
x ∈ Rn

∣∣ ∑
i∈A xi ≤ g(A) ∀A ⊆ S

}
, where n = |S|.

Our presented Frank-Wolfe algorithm variants directly
apply to minimization of a convex function f over
such a domain. This follows since linear optimiza-
tion over such a submodular polyhedron domain is
efficient, by an O(n log n) time greedy algorithm (Ed-
monds, 1970; Lovász, 1983; Bach, 2011). (Note that
for compactness, the domain is usually restricted to
the non-negative orthant D := Pg ∩ Rn≥0). Submodu-
lar optimization is currently gaining increased interest
as a more general way to relate combinatorial prob-
lems to convexity, such as for example for structured
sparsity, see e.g. (Bach, 2011).
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A. Primal Convergence

The proof of the convergence rate of the primal error
crucially depends on the following Lemma 5 on the im-
provement in each iteration, expressing this improve-
ment in terms of the current duality gap. Using the
lemma, the convergence proof then follows along the
same idea as in (Clarkson, 2010, Theorem 2.3). Note
that a weaker variant of Lemma 5 for the exact case
δ = 0 was already proven by (Frank & Wolfe, 1956)
(without allowing for approximate linear minimizers).

Lemma 5. For a step x(k+1) := x(k) + γ(s − x(k))
with arbitrary step-size γ ∈ [0, 1], it holds that

f(x(k+1)) ≤ f(x(k))− γg(x(k)) + γ2

2 Cf (1 + δ) ,

if s is an approximate linear minimizer, i.e.〈
s,∇f(x(k))

〉
≤ min

ŝ∈D

〈
ŝ,∇f(x(k))

〉
+ 1

2δγCf .

Proof. We write x := x(k), y := x(k+1) = x+γ(s−x),
and dx := ∇f(x) to simplify the notation. From the
definition of the curvature constant Cf of our convex
function f , we have

f(y) = f(x+ γ(s− x))

≤ f(x) + γ〈s− x, dx〉+ γ2

2 Cf .

Now we use that the choice of s is a good “descent
direction” on the linear approximation to f at x. For-
mally, we are given a point s that satisfies 〈s, dx〉 ≤
min
y∈D
〈y, dx〉+ 1

2δγCf , or in other words

〈s− x, dx〉 ≤ min
y∈D
〈y, dx〉 − 〈x, dx〉+ 1

2δγCf

= −g(x) + 1
2δγCf .

Here we have plugged in the definition (2) of the
duality gap g(x). Altogether, we therefore obtain

f(y) ≤ f(x)− γg(x) + γ2

2 Cf (1 + δ), which proves the
lemma.

Theorem’ 1 (Primal Convergence). For each k ≥ 1,
the iterates x(k) of Algorithms 1, 2, 3, and 4 satisfy

f(x(k))− f(x∗) ≤ 2Cf
k + 2

(1 + δ) ,

where x∗ ∈ D is an optimal solution to problem (1),
and δ ≥ 0 is the accuracy to which the internal linear
subproblems are solved (in the exact Algorithm 1, we
have δ = 0).

Proof. From Lemma 5 we know that for every step
of Algorithm 2, it holds that f(x(k+1)) ≤ f(x(k)) −
γg(x(k)) + γ2C, if we define C :=

Cf
2 (1 + δ). For the

line-search variant as in Algorithm 3 and for the “fully
corrective” Algorithm 4, the same bound (using the
same fixed γ := 2

k+2 on the right-hand side) also holds,

simply by inclusion of the fixed step-size case in the re-

spective minimum, i.e. f(x
(k+1)
Re-Opt) ≤ f(x

(k+1)
Line-Search) ≤

f(x
(k+1)
γ ). For the exact variant (i.e. Algorithm 1),

the bound holds for δ = 0.

Writing h(x) := f(x) − f(x∗) for the (unknown) pri-
mal error at any point x, this implies that

h(x(k+1)) ≤ h(x(k))− γg(x(k)) + γ2C
≤ h(x(k))− γh(x(k)) + γ2C
= (1− γ)h(x(k)) + γ2C ,

(4)

where we have used weak duality h(x) ≤ g(x) as dis-
cussed after the definition of the duality gap (2). We
will now use induction over k to prove our claimed
bound, i.e.

h(x(k+1)) ≤ 4C
k+1+2 k = 0, 1, . . .

The base-case k = 0 follows from (4) applied for the
first step of the algorithm, using γ = γ(0) = 2

0+2 = 1.

Now considering k ≥ 1, the bound (4) reads as

h(x(k+1)) ≤ (1− γ(k))h(x(k)) + γ(k)2
C

=
(
1− 2

k+2

)
h(x(k)) +

(
2
k+2

)2
C

≤
(
1− 2

k+2

)
4C
k+2 +

(
2
k+2

)2
C ,

where in the last inequality we have used the induc-
tion hypothesis for x(k). Simply rearranging the terms
gives

h(x(k+1)) ≤ 4C
k+2

(
1− 1

k+2

)
= 4C

k+2
k+2−1
k+2

≤ 4C
k+2

k+2
k+3 = 4C

k+3 ,

which is our claimed bound for k ≥ 1.

B. Primal-Dual Convergence

Theorem’ 2 (Primal-Dual Convergence). If Algo-
rithm 1, 2, 3 or 4 is run for K ≥ 2 iterations, then the

algorithm has an iterate x(k̂), 1 ≤ k̂ ≤ K, with duality
gap bounded by

g(x(k̂)) ≤ 2βCf
K + 2

(1 + δ) ,

where β = 27
8 = 3.375, and δ ≥ 0 is the accuracy to

which the linear subproblems are solved.

Proof. We will actually prove that the iterate of small
duality gap will appear in the last third of the K itera-
tions. To simplify notation, we will denote the primal
and dual errors for any iteration k ≥ 0 in the algorithm
by h(k) := h(x(k)) and g(k) := g(x(k)).

By our previous primal convergence Theorem 1, we
already know that the primal error satisfies h(k) =
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E[f(x(k))]− f(x∗) ≤ C
k+2 in any iteration k, where we

use the notation C := 2Cf (1 + δ).

In the last third of the k iterations, we will now sup-
pose that g(k) always stays larger than βC

K+2 . We will
derive a contradiction to this assumption. We write
D := K + 2 to simplify the notation. Formally, we
assume that

g(k) > βC
D for k ∈

{
dµDe − 2 , . . . , K

}
.

Here the parameter 0 < µ < 1 is arbitrary fixed, but
we will see later that a good choice for this parameter
is given by µ := 2

3 .

Now employing the crucial improvement bound from
Lemma 5 for the choice of γ := 2

k+2 , we have

h(k+1) ≤ h(k) − γg(k) + γ2

2 Cf (1 + δ). This bound

from Lemma 5 holds no matter if x(k+1) is obtained
by using the pre-defined step-size, or using line-search,
or by re-optimizing over the previous directions, since

f(x
(k+1)
Re-Opt) ≤ f(x

(k+1)
Line-Search) ≤ f(x

(k+1)
γ ). Therefore,

we have

h(k+1) ≤ h(k) − 2
k+2g

(k) + 2
(k+2)2Cf (1 + δ)

= h(k) − 2
k+2g

(k) + C
(k+2)2 .

Plugging in our assumption that the duality gap is still
“large”, we obtain

h(k+1) < h(k) − 2
k+2

βC
D + C

(k+2)2 .

Now we use that in our last third of the steps, our
γ := 2

k+2 is neither too large nor too small: More
precisely, if we define kmin := dµDe − 2 (note that
kmin ≥ 0 if K ≥ 1−µ

µ 2), and consider the steps in
kmin ≤ k ≤ K, then µD ≤ k + 2 ≤ D, so that our
bound now reads as

h(k+1) < h(k) − 2
D
βC
D + C

(µD)2

= h(k) − 2βC−C/µ2

D2 .

We will now sum up this inequality over the last third
of the steps from k = kmin up to k = K. These are at
leastK−kmin+1 = K−(dµDe−2)+1 ≥ (1−µ)D =: n3

many steps, resulting in

h(K+1) < h(kmin) − n3
2βC−C/µ2

D2

≤ C
µD − n3

2µβ−1/µ
D

C
µD

= C
µD

(
1− n3

2µβ−1/µ
D

)
.

here in the last inequality we have just used the primal
convergence Theorem 1 giving h(kmin) ≤ C

kmin+2 ≤ C
µD .

This completes the proof, since we arrive at the con-
tradiction that the primal error becomes negative, i.e.

h(K+1) < 0, when we plug in the claimed values for
µ := 2

3 and β := 27
8 . Indeed, this pair of values will

make the following term become zero: 1−n3
2µβ−1/µ

D =
1− (1− µ)(2µβ − 1/µ) = 1− 1

3 (2 9
4 − 3

2 ) = 0.

Therefore, our assumption on the gap is refuted, and
we have proven the claimed bound.

It is possible to obtain small duality gap within a
slightly smaller number of iterations, corresponding to
β ≈ 2, if a constant step-size is used in the second half
of the iterations, as formalized in the following theo-
rem. The proof follows the idea of (Clarkson, 2010,
Section 7).

Theorem 6 (Primal-Dual Convergence, Two-Regimes
Variant). Suppose Algorithm 1, 2, 3 or 4 is run
for K ≥ 1 iterations, and then continued for an-
other K + 1 iterations, now with the fixed step-size
γ(k) := 2

K+2 for all subsequent steps K ≤ k ≤ 2K + 1.

Then the algorithm has an iterate x(k̂), K ≤ k̂ ≤ 2K+
1, with duality gap bounded by

g(x(k̂)) ≤ 2Cf
K + 2

(1 + δ) ,

where δ ≥ 0 is the accuracy to which the internal linear
subproblems are solved.

Proof. Following the idea of (Clarkson, 2010, Section
7): By our previous Theorem 1 we already know that
the primal error satisfies h(x(K)) = f(x(K))−f(x∗) ≤

2C
K+2 after K iterations, again using the notation C :=
Cf (1 + δ).

In the subsequent K + 1 iterations, we will now sup-
pose that g(x(k)) always stays larger than 2C

K+2 . We
will try to derive a contradiction to this assumption.
Putting the assumption g(x(k)) > 2C

K+2 into the step
improvement bound given by Lemma 5, we get that

f(x(k+1))− f(x(k)) ≤ −γ(k)g(x(k)) + γ(k)2

2 C

< −γ(k) 2C
K+2 + γ(k)2

2 C

holds for any step size γ(k) ∈ (0, 1]. Now using the
fixed step-size γ(k) = 2

K+2 in the iterations k ≥ K of
the algorithm, this reads as

f(x(k+1))− f(x(k)) < − 2
K+2

2C
K+2 + 2

(K+2)2C

= − 2C
(K+2)2

Summing up over the additional steps, we obtain

f(x(2K+2))− f(x(K)) =

2K+1∑
k=K

f(x(k+1))− f(x(k))

< −(K + 2) 2C
(K+2)2 = − 2C

K+2 ,
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which together with our known primal approxima-
tion error f(x(K)) − f(x∗) ≤ 2C

K+2 would result in

f(x(2K+2)) − f(x∗) < 0, a contradiction. There-

fore there must exist k̂, K ≤ k̂ ≤ 2K + 1, with

g(x(k̂)) ≤ 2C
K+2 .

C. Optimality of the Trade-Off between
Sparsity and Approximation Quality

Lemma’ 3. For f(x) := ‖x‖22, and 1 ≤ k ≤ n, it
holds that min x∈∆n

card(x)≤k
f(x) = 1

k .

Proof. We prove the inequality min
x..

f(x) ≥ 1
k by in-

duction on k. The base-case k = 1 follows since
f(x) = ‖x‖2 = ‖x‖1 = 1 for any unit length vector
x ∈ ∆n having just a single non-zero entry. For k > 1,
we use that for every x ∈ ∆n of sparsity card(x) ≤ k,
we can pick a coordinate i with xi 6= 0, and write
x = (1− γ)v + γei as the sum of two orthogonal vec-
tors: v and a unit basis vector ei, where v ∈ ∆n of
sparsity ≤ k − 1, vi = 0, and γ = xi. Therefore

f(x) = ‖x‖22 = ((1− γ)v + γei)
T ((1− γ)v + γei)

= (1− γ)2vTv + γ2

≥ (1− γ)2 1
k−1 + γ2

≥ min
0≤β≤1

(1− β)2 1
k−1 + β2 = 1

k .

In the first inequality we have applied the induction
hypothesis for v ∈ ∆n of sparsity ≤ k − 1.
Equality: The value f(x) = 1

k is attained by setting k
of the coordinates of x to 1

k each.

The lower bound here also extends to prove that the
obtained duality gap g(x) is best possible:

Lemma’ 4. For f(x) := ‖x‖22, and any k ∈ N, k < n,
it holds that g(x) ≥ 2

k ∀x ∈ ∆n s.t. card(x) ≤ k .

Proof. g(x) = xT∇f(x) − mini(∇f(x))i = 2(xTx −
mini xi). We now use mini xi = 0 because card(x) <
n, and that by Lemma 3 we have xTx = f(x) ≥ 1

k .

D. Relating Curvature to
Lipschitz-Continuous Gradient

For any choice of norm ‖.‖, the curvature constant Cf
can be upper bounded as follows:

Lemma 7. Let f be a convex and differentiable func-
tion with its gradient ∇f is Lipschitz-continuous w.r.t.
some norm ‖.‖ over the domain D with Lipschitz-
constant L > 0. Then

Cf ≤ diam‖.‖(D)
2
L .

Proof. By (Nesterov, 2004, Lemma 1.2.3), we have
that for any x,y ∈ D,

f(y)− f(x)− 〈y − x,∇f(x)〉 ≤ L
2 ‖y − x‖

2

We want to use this upper bound in the definition (3)
of the curvature constant. Observing that for any
x, s ∈ D, we have that also y := x + γ(s − x) ∈ D
and 1

γ2 ‖y − x‖2 = ‖s− x‖2, we can therefore upper
bound the curvature as

Cf ≤ sup 2
γ2

L
2 ‖y − x‖

2
= supL ‖s− x‖2
≤ Ldiam‖.‖(D)2 ,

which is the claimed bound.

E. Approximating the Top Eigenvalue
of a Matrix

For optimization over bounded trace-norm (see Sec-
tion 4.3), we have seen that the linear subproblem to
be solved in every iteration of the Frank-Wolfe algo-
rithm amounts to finding an approximate top eigen-
value (or singular vector pair). The running time of
the standard Lanczos’ algorithm for this subproblem
is bounded as follows:

Proposition 8 (Kuczyński & Woźniakowski (1992)).
For any matrix M ∈ Rm×n, and ε′ > 0, Lanczos’
algorithm returns a pair of unit vectors (u,v) s.t.
uTMv ≥ σ1(M) − ε′, with high probability, using at

most O
(
NM

log(n+m)
√
L√

ε′

)
arithmetic operations.

Here NM is the number of non-zero entries of the input
matrix M , and L is an upper bound on σ1(M). Note
that for the Frank-Wolfe Algorithms 2, 3, and 4, the
subproblem accuracy needs to be chosen not larger
than ε′ :=

δCf
k+2 in iteration k, which is in O(ε).

Compared to SVD taking at least cubic time in n+m,
such an approximate computation of only one approx-
imate eigenvector (or singular vector pair) is much
more efficient, see also (Jaggi & Sulovský, 2010).

Randomized Subproblems. Note that in general,
if the linear subproblem in each step is solved approxi-
mately only in expectation, then the step-improvement
bound from Lemma 5 still holds in expectation (condi-
tioned on the previous iterate). Therefore, the primal
as well as primal-dual convergence bounds (from the
main Theorems 1 and 2) do still hold in expectation
in this case.


